

Abstract

This report details progress on an arm exoskeleton for stroke rehabilitation controlled by a

14-sensor EEG headset. The project has advanced with adjustments to the plan, focusing on

hardware prototyping, safety and testing to ensure usability and reliability.

Table of Contents
List of Tables.. 3

Table of Abbreviations ... 4

Table of Formulas .. 4

Table of Figures ... 5

Introduction .. 6

Requirements and Evaluation .. 6

Changes of Requirements... 6

Summary of Requirements ... 7

Justification of Changes.. 8

Demonstrating the Fulfilment of Requirements ... 9

Explanation of the met Requirements ... 10

Unmet Requirements .. 12

Tests ... 12

Table of Tests.. 13

Explanation of Test Sections .. 22

Updated Risk Assessment .. 24

Table of Risks ... 24

What has changed? ... 27

Design .. 29

Bill of Materials ... 29

Emotiv BCI .. 29

Emotiv Pro .. 30

Emotiv BrainViz ... 32

Emotiv BCI ... 33

Hardware .. 37

Mechanical.. 37

Electronic .. 60

Software ... 68

Realisation of Evaluation of the Final Robotic System ... 72

Software Realisation .. 72

Software Development ... 72

Important Code Extracts ... 74

Page 2

Safe Operation.. 90

Assumptions for Safe Operation .. 90

Safety Features ... 91

User Manual ... 93

Further Work .. 98

Unfinished Features.. 98

System Improvements .. 102

References .. 103

Bibliography... 103

Appendix .. 104

Appendix A - Engineering Drawings ... 104

Appendix B – 5v Relay Board Datasheet... 120

Appendix C – Arduino Uno R3.. 129

Appendix D – DS3240 Servo Datasheet .. 155

Appendix E – E-Stop Datasheet ... 160

Appendix F – INA219 Datasheet ... 161

Appendix G – INA226 Datasheet .. 200

Appendix H – Jetson Nano Datasheet.. 239

Appendix I – Omron V-156-1C25 Microswitch Datasheet.. 280

Appendix J – PCA9685 Datasheet ... 296

Appendix K – SRD-05VDC Relay Datasheet.. 347

Appendix L – Talentcell 12v Battery Datasheet... 349

Appendix M – XL4015 DC-DC Step-down Buck converter Datasheet 350

Page 3

List of Tables
Table Description

Table of Abbreviations A list of key technical abbreviations and
terms used throughout the report for clarity

and quick reference.

Table of Formulas This table summarises the key mechanical
formulas used during stress analysis and
part validation for the exoskeleton’s 3D-

printed components.

Table of Figures A list of all figures included in the report,
showing diagrams, schematics, and visual
results relevant to the design,

implementation, and testing of the system.

Table of Tests A structured summary of all test categories
carried out during development covers
functionality, safety, performance, and

integration of hardware and software
components.

Table of Risks An overview of potential risks identified

during the project, including technical,

safety, and logistical concerns that could
impact system performance or development

progress.

Bill of Materials A complete list of hardware and software

components used to develop the EEG-
controlled exoskeleton system, including

electronics, mechanical parts, and
development tools.

Table of Bending Under Load This table presents the deflection (in mm) of

various wrist linkage bar types under
progressively applied loads, measured using
a luggage scale. Each type varied in infill

pattern or print quality.

Page 4

Table of Abbreviations
Abbreviation Definition

EEG Electroencephalogram
PDD Project Definition Document
CFRP Carbon Fibre Reinforced Polymer

PLA Polylactic Acid
BCI Brain-computer Interface

USB Universal Serial Bus
PWM Pulse-Width Modulation
ROS Robot Operating System

MQTT Message Queuing Telemetry Transport
CPU Central Processing Unit

GPIO General-Purpose Input Output
FOS Factor of Safety

Table of Formulas
Formula Definition

𝜎 =
𝑀𝑦

𝐼

Bending Stress

𝐼 =
𝑏ℎ3

12

Moment of inertia in regular cross section

𝜎 =
𝐹

𝐴

Normal stress

𝑃 =
4𝑀𝑚𝑎𝑥

𝐿

Breaking load from max moment

𝐸 =
𝜎

𝜀
 Young’s modulus

𝐹𝑜𝑆 =
𝑆𝑡𝑟𝑒𝑛𝑔ℎ𝑡

𝐿𝑜𝑎𝑑

Factor of Safety (FOS)

Page 5

Table of Figures
Figure 1 - EEG Command Recognition ... 10
Figure 2 - Bicep Curl and Wrist Rotation .. 10
Figure 4 - Hardware E-Stop ... 11
Figure 3 - Limit Switches .. 11
Figure 5 - Power Distribution Unit .. 11
Figure 6 - Push Command ... 31
Figure 7 - Arithmetic Operations ... 31
Figure 8 - Animal Recall .. 31
Figure 9 - Recall of Music ... 31
Figure 10 - BrainViz Arithmetic Operations .. 32
Figure 11 - BrainViz Push Command .. 32
Figure 12 - BrainViz - Animal Recall .. 32
Figure 13 - BrainViz Recall of Music .. 32
Figure 14 - Initial Training with 5 commands ... 34
Figure 15 - Initial Training with "Drop" vs "Lift" ... 34
Figure 16 - Full Command Set... 35
Figure 17 - Bicep Arm Adaptability ... 37
Figure 18 - Elbow Servo Motor ... 38
Figure 19 - Wrist Linkage Bar ... 41
Figure 20 - Bicep Clamp .. 43
Figure 21 - Elbow Plate ... 45
Figure 22 - Isometric view of entire system .. 49
Figure 23 - Upper Bicep Cup Foam... 50
Figure 24 - Isometric View of Forearm Brace ... 51
Figure 25 - Isometric View of Wrist Mechanism Mount ... 51
Figure 26 - Difference between print layer orientations .. 53
Figure 27 - Bicep Cups Design Iterations .. 54
Figure 28 - Isometric View of Bicep Brace ... 55
Figure 29 - Type I bar break ... 59
Figure 30 - Data Flow .. 62
Figure 31 - Limit Switch Arduino Wiring Diagram... 63
Figure 32 - INA Arduino Wiring Diagram... 64
Figure 33 - PCA Arduino Wiring Diagram .. 65
Figure 34 - Full Wiring Diagram ... 66
Figure 35 - INA Data Flow .. 100

Page 6

Introduction
This project aims to develop a rehabilitative exoskeleton arm capable of wrist rotation and

bicep curl, controlled via electroencephalogram (EEG) signals from the Emotiv EpochX 14-

channel headset. While the original Project Design Document (PDD) proposed custom EEG

signal processing using MATLAB and Simulink, this was reconsidered due to restrictions on

accessing raw EEG data. As a result, signal interpretation is handled through Emotiv’s

proprietary Cloud platform. This adjustment is appropriate for the project’s current scope as a

proof of concept demonstrating the feasibility of EEG-based rehabilitation control systems.

Although the implementation has evolved, the project’s core structure and objectives remain

aligned with the original plan. Early in development, it became clear that running the

complete control stack, including motor commands and signal parsing, on the Jetson Nano

was not feasible due to hardware and resource limitations. Specifically, three of the four

Jetson Nanos provided had non-functional I²C buses, and one exhibited central processing

unit (CPU) instability, preventing consistent performance. The need for more straightforward

electrical integration and real-time control prompted a revised architecture: control logic in

the final design is distributed across three Arduino boards, each responsible for motor control,

sensor feedback, and interface logic, while the Jetson Nano functions as a central coordinator.

Mechanical design also shifted from carbon fibre reinforced polymer (CFRP) to polylactic

acid (PLA), motivated by budget limitations and the desire to use more accessible materials

for rapid prototyping. These refinements allowed faster iteration and testing without

compromising the overall goals: creating a portable, safe, EEG-driven assistive device for

post-stroke arm rehabilitation. The system is being evaluated based on the ease of user

interaction with Emotiv’s mental command training interface, which translates cognitive

intent into discrete actuation commands.

Requirements and Evaluation
This section outlines how the system’s requirements evolved and how each was addressed. It

covers key changes to the original plan, revised objectives and validation through testing.

Together, these demonstrate the feasibility and effectiveness of the final prototype.

Changes of Requirements

The initial requirements outlined in CWRK-001 included assumptions that the team would

have full access to raw EEG data from the Emotiv headset and that all signal processing and

control logic could be managed directly on the Jetson Nano. These assumptions were not

fully validated in early planning and were not formally listed as project risks, representing a

gap in the initial risk assessment process. Earlier versions of the report did not explicitly

account for potential limitations of the Emotiv platform, nor the possibility that raw EEG

access might be restricted. This limitation should have been identified and discussed more

thoroughly in the early requirements stage.

Page 7

Ultimately, access to raw EEG data was restricted due to the proprietary nature of the Emotiv

platform. This removed the requirement to develop and validate a custom EEG signal

processing algorithm. Instead, the project adopted Emotiv’s cloud-based mental command

processing, which offers pre-defined cognitive classifications. At the same time, this limited

customisation was acceptable for the project’s proof-of-concept aims.

Secondly, although initial planning treated the Jetson Nano as the central controller,

computational and interfacing limitations became more evident during integration. While

Emotiv’s platform handled cognitive signal processing externally, the Jetson faced issues

related to hardware reliability (e.g., three of the four units had non-functional I²C buses, and

one had CPU instability), as well as practical difficulties managing general-purpose input

output (GPIO) and real-time motor control. This and the desire to modularise the system for

easier debugging and safety led to the decision to adopt a distributed architecture. The

updated system delegates low-level motor control and sensor feedback to three Arduino

boards, while the Jetson Nano serves as a high-level coordinator and interface with Emotiv.

Hardly significant delays in setting up and running simulations, mainly due to time

constraints and software compatibility issues, meant that simulation-based verification and

associated performance requirements were removed from the scope. This was a pragmatic

decision to prioritise physical prototyping and hands-on testing in the available timeframe.

Lastly, the initial requirement for a lightweight composite frame was revised due to material

availability and lack of access to CFRP. PLA was selected as a more accessible and

affordable alternative. While this material was sufficient for initial testing, one prototype

failure highlighted the importance of print settings—functional strength was achieved only

when printed at an appropriate infill density, layer height and position (see “Mechanical

Analysis of Parts” section).

Summary of Requirements

This project aims to develop a proof-of-concept EEG-controlled exoskeleton for

rehabilitation, specifically targeting bicep curl and wrist rotation functionality. The system

must safely translate user intent into physical motion using a 14-channel Emotiv Epoc X EEG

headset. It must operate reliably, be safe for users, and allow for limited degrees of freedom,

making it suitable for rehabilitation scenarios. The exoskeleton must be wearable, portable

and comfortable for extended use.

The core functional and safety requirements are as follows:

1. Accurate EEG Signal Interpretation – The system must recognise basic motor-

cortex imagery commands, such as left or push, via the Emotiv cloud services and

then translate the data into mechanical action.

2. Real-Time Actuation—The system must actuate two servo motors in real time based

on EEG input with minimal latency.

3. Power and Control Reliability—The robotic arm must operate independently and

stably, using INA226 current sensors and dual 12v 6a batteries in parallel.

4. Safe Operation—To prevent unintended motion, the system includes an emergency

stop button, limit switches, an INA226 current cutoff, built-in overcurrent protection

in the servo motors, and software shutdown.

Page 8

5. Modular Architecture—Hardware must be accessible and modifiable. The final

setup includes 3 Arduino Unos for decentralised control and a Jetson Nano as the

system’s processing hub and Wi-Fi connection.

6. Mechanical Feasibility – The design must support limb movement without structural

deformation. PLA parts are printed with adequate infill and tested under torque.

7. User Feedback Integration—Simulation software provides real-time system status,

signal strength integrity, and training proficiency.

These requirements are derived from the need to validate EEEG signal control in

neurorehabilitation devices. Emphasis is placed on modularity, safety, affordability and

demonstrating viability using consumer-accessible components.

Justification of Changes

The original plan relied on the Jetson Nano for I2C communication and robot operating

system (ROS) topic control. However, hardware issues, including I2C instability and a

damaged Jetson unit, made this unfeasible. Control was redistributed to three Arduino Unos,

each handling specific tasks via a universal serial bus (USB) serial. This improved reliability,

reduced wiring complexity and enabled real-time processing.

The team initially intended to use ROS and Gazebo for system integration and simulation.

However, as development progressed, it became clear that ROS introduced significant

complexity and overhead disproportionate to the project’s scope, especially as simulation of

the physical environment was ultimately deprioritised in favour of real-world testing. This led

to a switch to message queuing telemetry transport (MQTT) and Node-RED, which enabled a

more modular and lightweight architecture using isolated Python scripts. This approach

improved fault tolerance and simplified debugging during hardware integration.

Due to license changes in Emotiv’s software and firmware [Emotiv, n.d.] Node-RED was

moved from containerisation to a bare-metal deployment to maintain compatibility. However,

the MQTT broker remained containerised and unaffected by the licensing constraints. Note

that our original intention was to keep the software contained for ease of use and control

since we were running the software on a university-provided laptop.

These changes addressed hardware limitations and increased system stability without

affecting core functionality.

Page 9

Demonstrating the Fulfilment of Requirements

Each realised requirement was tested and verified through targeted evaluations during the

integration and prototyping phases:

1. EEG Signal Interpretation

 EEG mental command recognition was tested using the Emotiv Epoc X and its cloud-

based software. The team verified that two distinct commands (e.g. left/right imagery)

triggered appropriate motor responses via Node-RED and MQTT logging.

2. Motor Actuation (Bicep and Wrist)

 DServo 35kg servos were integrated into the PLA printed frame. Controlled tests

confirmed consistent movement under command without stalling, using predefined

EEG signals to trigger actuation.

3. Power System and Sensor Monitoring

 The INA226 current sensor was tested using controlled motor loads. The output was

read through the corresponding Arduino and monitored via serial output on the Jetson

Nano. Reading confirmed that the current stayed within safe thresholds.

4. Safety Systems

 Emergency stop functionality was verified by cutting relay power to the system mid-

operation. Four limit switches were manually triggered to confirm motion cut-off at

physical boundaries.

5. Modular Software Architecture

 Each subsystem was run independently through separate Arduino boards and managed

via modular Python scripts. The use of MQTT topics allowed isolated testing and

fault handling.

6. System Portability and Usability

 The 3D printed design, supported by a shoulder strap and powered by two 12v 6A

batteries, was tested for comfort and continuous operation. No structural failure or

overheating was observed during testing.

All fulfilled requirements were validated through real-time testing rather than simulation,

which aligned with the project’s revised scope. The only section lacking was the wrist, which

was supposed to be a 90-degree turn; however, we only achieved a 45-degree total left and

right. This overdoes affect the proof of concept being achieved; if the team had access to

more time and resources, this could have easily been achieved and will be discussed below.

Page 10

Explanation of the met Requirements

The following is a summary of how each key requirement was met and validated during

development and testing:

• EEG Command Recognition

 Mental commands were captured using the Emotiv Epoc X headset. The cloud

platform processed the signals and sent structured outputs to the Jetson Nano.

Functionality was confirmed through consistent and repeatable control of the servos

in response to mental input.

• Bicep Curl and Wrist Rotation

 Motor control was successfully implemented using two DServo 35kg servos. EEG-

triggered actions (left and right wrist rotation and up and down bicep curl) moved the

exoskeleton arm through its two degrees of freedom (SV-T04, D-T03). Movement

was repeatable within the physical design limits (WS-T05, SV-T04, SV-T07, D-T04,

D-T08).

Figure 1 - EEG Command Recognition

Figure 2 - Bicep Curl and Wrist Rotation

Page 11

• Safe Operation (Emergency Stop and Limit Switches)

 The emergency stop function was tested successfully by cutting power via the relay

via software (WS-T06, SF-T04, I-T01, I-0T03) . A physical emergency stops the

power to the servos, too (I-T07) . Limit switches were triggered manually and during

motion to halt movement as designed. However, the software range of the motors

does not reach the limit switches (SF-T03); this is just an additional feature to ensure

the user's safety if the servos malfunction. All safety responses were reliable and

immediate (ELC-T03).

• Electrical Monitoring (INA266)

 The current draw was monitored using the INA226 chips connected to an Arduino.

Sensor values were received by the Jetson Nano via serial and monitored using

MQTT logs (WS-T04, WS-T05, WS-T06, WS-T07) to ensure the current remained

within safe operating levels (SF-T01, ELC-T06).

• System Architecture and Robustness

 The split between Jetson Nano and Arduino proved effective. Each Arduino handles

its own I/O tasks independently. The modular Python-MQTT system allowed fault

isolation and debugging without complete system disruption (JN-T05).

• Portability and Structure

 The structure was printed in PLA and tested under load with servo actuation (M-T01).

The system will be worn using a shoulder strap and function as a self-contained,

battery-powered prototype, meeting user comfort and mobility design goals (M-T04).

A PDU was created to begin with; however, due to time constraints and a multitude of

issues, the team decided to abandon this idea. However, it was achieved for the first

prototype.

These requirements were demonstrated through live testing, debug logs or hardware

validation and contributed directly to the system’s overall proof-of-concept success.

Figure 3 - Hardware E-Stop Figure 4 - Limit Switches

Figure 5 - Power Distribution Unit

Page 12

Unmet Requirements

The only significant requirement not fulfilled was the full simulation of the exoskeleton using

Gazebo. This was initially intended to support control validation and integration with ROS.

However, progress was limited due to time constraints and software compatibility issues.

This shortfall did not impact the final system's physical implementation or core functionality,

as all control and testing were successfully handled using the actual hardware and an MQTT-

based communication flow. The decision to deprioritise simulation was necessary to focus

resources on real-world testing and system reliability, which will be discussed below.

Tests
This section outlines the tests to verify system functionality, safety and reliability. Each test

group targets a specific subsystem, ensuring the prototype meets its intended use in real-

world rehabilitation scenarios

Page 13

Table of Tests

Test ID Test name Test description Test pass criteria Pass or Fail

EEG
E-T01 Headset charges Headset charges and stores power Charges, stores power Pass

E-T02 Power on the headset The headset powers on Turns on Pass

E-T03 Bluetooth connection
A Bluetooth connection is established between the
Windows system and the headset Connects to the pc successfully Pass

E-T04 Connect to the software Emotiv Suite connects to the headset
Connects to the software
successfully Pass

E-T05 Sends signals to Windows system Signals received in the Emotiv suite Signals are received Pass

E-T06
Can interact with the software
training suite

Signals can be used to control in-software training
suites

Signals cause responses in
software, e.g. cube Pass

E-T07 Trained model saved as profile Can reopen and access a trained dataset
Can access the created profile for
the trained data Pass

E-T08 Headset signals are consistent
Checking the signals to make sure that they align
with the desired results

Signals show similar patterns when
put through a controlled
environment Pass

E-T09 User Fatigue
Understanding the best sets for training so a user
does not get too tired and too frustrated Two 15-minute sets within an hour Pass

EEG Tests (E-T Series)

These tests verify the functionality and reliability of the Emotiv EEG headset. They cover essential actions such as charging,

powering on, connecting via Bluetooth, interacting with software (Emotiv Suite), saving trained profiles, and ensuring the EEG

signal's consistency. Importantly, they assess whether user training sessions are practical and not overly fatiguing, which supports

long-term usability in rehabilitation contexts.

Page 14

Windows
System

WS-T01 Docker installed Docker is installed and running on WSL
Docker is installed and can be
opened Pass

WS-T02 Mosquitto is installed and running
Mosquitto is running and configured as a server in
Docker

Mosquitto server running to
connect to Pass

WS-T03 Node-Red is installed and running Node-Red running in Docker
Node-RED is accessible in the
browser Pass

WS-T04
Node-Red connects to the MQTT
broker

Node-Red connected to the MQTT broker for
communications

Node-Red can connect to an MQTT
server Pass

WS-T05
Signal sent and received through
the firewall

Signals from Emotiv can be sent and received
through the firewall

Node-Red can receive the sent
commands Pass

WS-T06 Signal propagated via MQTT
Signals can be propagated through MQTT via
Node-Red

Node-Red can send messages of
commands via MQTT Pass

WS-T07
Status messages received by
MQTT Status messages can be received into Node-Red Status feedback can be received Pass

Windows System Tests (WS-T Series)

This group of tests confirms that the software environment on the Windows machine is correctly configured. It ensures the

containerised services (Docker), MQTT broker (Mosquitto), and flow-based development tool (Node-RED) are operational. It also

confirms that signal flow between the EEG headset and the MQTT ecosystem is functional and secure, even across system firewalls.

Page 15

Jetson
Nano

JN-T01
Jetson Nano powers via barrel
jack. Jetson powers on and boots Jetson powers on and boots Pass

JN-T02
Python libraries and compiler
installed Python and dependencies are installed

Python is installed and can run with
the necessary dependencies Pass

JN-T03 Scripts running A Python Programme can run Python scripts run successfully Pass

JN-T04 Connected to the MQTT broker
The Python script connects to the MQTT broker for
commands

The Python MQTT broker can
connect successfully Pass

JN-T05 Signals received MQTT signals received
Signals are received from Node-
Red via MQTT Pass

JN-T06
Signals sent to the motor
controller Signals sent to the motor controller

The motor controller receives the
signals for controlling the servos Pass

JN-T07 Status messages sent by MQTT Status messages sent back via MQTT

Status messages can be sent back
to Node-Red for status
updates/checks. Pass

JN-T08 PCA9658 test
Does the PCA9658 communicate with the Arduino
and Jetson

Jetson receives communications
from the PCA9658 Pass

Jetson Nano/Raspberry Pi Tests (JN-T Series)

These tests were originally intended to validate the Raspberry Pi 5 as a control unit. They check power-on behaviour, script

execution in C++, and communication with the MQTT broker and motor controller. Though the Pi was not ultimately used in the

final system, these tests document an important phase of development and fallback exploration before returning to the Jetson Nano.

Page 16

Servos

SV-T01 Moves when signals are received
When the signal from the motor driver is received,
the servos move to the correct position

Motor moves to the position it is
told to using PWM Pass

SV-T02 Stops at software limits Software limits prevent over-rotation in isolation Servo can't pass limits Pass

SV-T03 Stops at hardware limits Hardware limits prevent over-rotation in isolation Servo can't pass limits Pass

SV-T04 Has smooth motion in small steps
Small incremental steps when moving to allow
smooth motion

Movements are small but
consistent Pass

SV-T05 Doesn't move when not told to
When no input is sent, the servo stays stable and
doesn't move The servo only moves when told to Pass

SV-T06

Has the holding strength to catch
the arm, and either keep it or
slowly lower it

Can hold an appropriate load and let an excessive
load down slowly if necessary

The load-bearing capacity is
adequate to support the average
arm Pass

SV-T07
Homes to "origin" at the start and
end of the operation Homes are ready for putting on and storage

Servo homes when the system
turned on and off Pass

SV-T08
Handles the Weight of a factor of
1.8 Pass

Servo Tests (SV-T Series)

These tests assess the behaviour of the servo motors that move the exoskeleton. They ensure accurate motion control, enforce

software and physical movement limits, and check for stable holding strength and safe load bearing. These are critical for confirming

that the system performs safe and smooth limb movements.

Page 17

Safety
features

SF-T01
Over-current protection cuts
power

Over-current protection cuts power to the relevant
components

Power gets cut where necessary
for safety measures to prevent
operation Pass

SF-T02
Mechanical limits prevent over-
rotations

Mechanical limits prevent over-rotation in a
partially completed system

Servos cannot move outside their
limits Pass

SF-T03
Software limits prevent over-
rotations

Software limits prevent over-rotation in a partially
completed system

Servos cannot move outside their
limits Pass

SF-T04
Software emergency stop works in
isolation

Software emergency stop prevents the passing of
commands

Emergency stop halts command
propagation Pass

SF-T05
Mechanical emergency stop works
in isolation Mechanical emergency stop prevents operations

Stops system operation within the
necessary modules

 Pass

Safety Feature Tests (SF-T Series)

Focused on protecting users and hardware, these tests verify that emergency stop mechanisms work mechanically and via software.

Over-current protection and movement limit enforcement are also validated to reduce the risk of user injury or hardware failure.

Page 18

Integration

I-T01
Messages are passed reliably
around the system

Messages are passed through the pipeline with
maintained integrity

The message that is sent first is
received last, with all necessary
information intact and correct Pass

I-T03
Commands from the headset are
followed

Commands sent are followed and interpreted into
movement appropriately

The movements match the
expected operations Pass

I-T04
Commands being sent do not
override safety limits

All safety limits are followed in an integrated
system using all systems

Safety limits are followed, cuts off
and stops where required Pass

I-T05

Status commands reach the
Windows system to enforce limits
via software

Status messages are propagated back to the
Windows system to display status and enforce
limits

Status is sent back through the
system and is used to show and
operate with clear intent Pass

I-T06

Emergency stops (Software)
prevent operation, and the status
is sent back

When emergency stops are active, the status
shows as such while the operation is ceased

The emergency stop notification
shows Pass

I-T07

Emergency stops (Hardware)
prevent operation, and the status
is sent back

When emergency stops are active, the status
shows as such while the operation is ceased

The emergency stop notification
shows Pass

I-T08
Disconnections pause operation
safely.

When a disconnection occurs, the exoskeleton
stops operating safely for removal or awaits
reconnection

Operation ceases to prevent
negligent movements and prevent
damage and harm to users and
property. Pass

I-T09
Power Supply and Distribution
unit testing

Test the PDU and PSU to ensure they properly
distribute power across all components, including
the Jetson Nano, Arduino, and servo motors.

Ensure no overheating or power
instability occurs when the system
is under load. Pass

Integration Tests (I-T Series)

These tests validate full-system functionality across all modules. They confirm that messages from the EEG headset traverse the

signal pipeline correctly and that all components (headset, server, actuators, UI) remain in sync. Crucially, safety features are tested

within the full operational context, not just in isolation.

Page 19

Electronics
Test

ELC-T01 Incorrect Wiring
Incorrect wiring, for example, a relay being wired
into the I2C bus

Works as intended, a mitigation
would be to draw/write up
schematics and circuit diagrams Pass

ELC-T02 PDU Testing
PDU “Doesn’t Work” as in a multitude of physical
component issues we can’t direct

Pre-test every component within
the PDU to allow us to narrow
down the issue Pass

ELC-T03 Debugging Issues
Following ELC-T03, we can use Python scripts for
testing and Python for our final program.

It helps solve potential issues. If we
know there are no hardware
issues, it's a software issue, and
vice versa. Pass

ELC-T04 C Connector Damaged
Is our C connector to our PI-5 damaged? Use GPIO
as a power route to test

Can the PI be powered in other
ways? Yes? Pass the test. Pass

ELC-T05 Soldering Bridges

Ensuring careful planning, visual inspection, testing
with a continuity multimeter, and cleaning the
board frequently during building

If there are no short circuits and
the description has been followed,
and the system turns on, pass the
test. Pass

ELC-T06 Correct Flow

Measure the voltage and current output of the
overall PDU after the ELC-T02 and the build
process. Pass

ELC-T07 Over-Heating
Thermal testing, proper spacing of components
and heat sink on pi-5 Pass

ELC-T08 Full System Test

Overload the system and “stress” it out to test its
overall capabilities under the maximum loads a
user of the arm could output Pass

Electronics Tests (ELC-T Series)

These tests ensure electrical system integrity, including correct wiring, functional power distribution, thermal safety, and the system's

ability to tolerate stress. They also verify mitigation strategies for faults like solder bridges or connector failures, making them

essential for long-term hardware reliability.

Page 20

Materials Pass

M-T01

3d prints are strong enough to
take the weight and forces applied
to them

Test if the parts can withstand loads over the
expected

Parts do not break under
anticipated and within reasonable
overloaded bounds Pass

M-T02

Materials have low enough
friction to move around or on
each other reliably.

Test if sliprings and pivots can move smoothly
when actuated by servos

Parts move smoothly and
consistently Pass

M-T03
Straps have enough rigidity to
hold the exoskeleton in place

Test if, when under operation, the straps are rigid
enough not to let the exoskeleton hang loosely or
move unexpectedly

Straps hold the exoskeleton firmly
in place to prevent movements in
unintended directions Pass

M-T04 The design fits on the arm
Test if the parts fit onto someone's arm once
assembled

Someone can fit into the design,
and it is comfortable. Pass

Materials Tests (M-T Series)

These tests evaluate the exoskeleton's mechanical design. They confirm that 3d-printed parts are strong enough, that pivot joints and

straps function correctly, and that the assembled structure fits the user comfortably and securely.

Page 21

Dynamics

D-T01 Raise (lifting) the arm
Can we raise the arm by 45 degrees to each point
and hold the arm there

An arm reaches and maintains the
target position without stuttering.
No excessive strain on motors.
Smooth descent. Pass

D-T02 Wrist rotation
Can we rotate the arm to its maximum points and
hold the wrist in place

The wrist rotates smoothly and
accurately. The system does not
overshoot the angle or struggle to
hold position. Pass

D-T03 Sequential movement test
Can we lift the arm 45 degrees, rotate the wrist, lift
again and then return to the resting position

No conflicting commands or erratic
movements. Movements transition
smoothly without jerking. Pass

D-T04 Resistance load test
Can the arm lift more than our subject’s arm
weight? (try on other people)

The arm holds steady without
slipping. The system detects
overload and prevents damage. pass

D-T05 Rapid Switching

Can the project reliably switch between each
movement? Speed is not required, but it will stress
test the system.

No command is ignored or
misinterpreted—no unexpected
stalling or instability/locking. Pass

D-T06 Emergency stop
Can the arm safely stop the arm whilst it is in
motion

The arm halts immediately without
dropping. Emergency stop does not
lock the system permanently Pass

D-T07 Project Fatigue
See if the project itself is reliable over extended
use

The system remains responsive
throughout. Minimal signal drift. Pass

D-T08 User Fatigue

What is the average amount of time a user can use
the arm for (maybe see how long it takes to “get
used to it” too)

The user can use over the
recommended time, which is 15
minutes Pass

Dynamics Tests (D-T Series)

These tests simulate real-world operation by commanding arm and wrist motions under different conditions. They measure

performance under repeated use, stress, weight load, and rapid switching between commands. They also assess how the system reacts

to emergency stop inputs and how the user physically tolerates extended use.

Page 22

Explanation of Test Sections

EEG Tests (E-T Series)

These tests verify the functionality and reliability of the Emotiv EEG headset. They cover

essential actions such as charging, powering on, connecting via Bluetooth, interacting with

software (Emotiv Suite), saving trained profiles, and ensuring the EEG signal's consistency.

Importantly, they assess whether user training sessions are practical and not overly fatiguing,

which supports long-term usability in rehabilitation contexts.

Windows System Tests (WS-T Series)

This group of tests confirms that the software environment on the Windows machine is

correctly configured. It ensures the containerised services (Docker), MQTT broker

(Mosquitto), and flow-based development tool (Node-RED) are operational. It also confirms

that signal flow between the EEG headset and the MQTT ecosystem is functional and secure,

even across system firewalls.

Jetson Nano/Raspberry Pi Tests (JN-T Series)

These tests were originally intended to validate the Raspberry Pi 5 as a control unit. They

check power-on behaviour, script execution in C++, and communication with the MQTT

broker and motor controller. Though the Pi was not ultimately used in the final system, these

tests document an important phase of development and fallback exploration before returning

to the Jetson Nano.

Servo Tests (SV-T Series)

These tests assess the behaviour of the servo motors that move the exoskeleton. They ensure

accurate motion control, enforce software and physical movement limits, and check for stable

holding strength and safe load bearing. These are critical for confirming that the system

performs safe and smooth limb movements.

Safety Feature Tests (SF-T Series)

Focused on protecting users and hardware, these tests verify that emergency stop mechanisms

work mechanically and via software. Over-current protection and movement limit

enforcement are also validated to reduce the risk of user injury or hardware failure.

Integration Tests (I-T Series)

These tests validate full-system functionality across all modules. They confirm that messages

from the EEG headset traverse the signal pipeline correctly and that all components (headset,

server, actuators, UI) remain in sync. Crucially, safety features are tested within the full

operational context, not just in isolation.

Electronics Tests (ELC-T Series)

These tests ensure electrical system integrity, including correct wiring, functional power

distribution, thermal safety, and the system's ability to tolerate stress. They also verify

mitigation strategies for faults like solder bridges or connector failures, making them

essential for long-term hardware reliability.

Page 23

Materials Tests (M-T Series)

These tests evaluate the exoskeleton's mechanical design. They confirm that 3d-printed parts

are strong enough, that pivot joints and straps function correctly, and that the assembled

structure fits the user comfortably and securely.

Dynamics Tests (D-T Series)

These tests simulate real-world operation by commanding arm and wrist motions under

different conditions. They measure performance under repeated use, stress, weight load, and

rapid switching between commands. They also assess how the system reacts to emergency

stop inputs and how the user physically tolerates extended use.

Page 24

Updated Risk Assessment

Table of Risks

Risk ID Risk Name Severity *

Likelihood

Score Mitigation Mitigated

Severity *

Likelihood

Residual

Risk

 -Risk to Team

Members

RTM-001 Stress and Burnout 5*4 20 Follow the Gantt chart, taking weekends and
holidays off

1*2 2

RTM-002 Illness 2*4 8 Have allocated sick days, weekend breaks and

holidays in the plan/Gantt chart

1*3 3

RTM-003 Medical Constraints 5*2 10 Have allocated sick days, weekend breaks and
holidays in the plan/Gantt chart

4*1 4

RIM-004 In proper us of GIT 5*3 15 Familiarise ourselves with GIT with practice
projects and ensure branching

5*1 5

 -Risk to Derail the

Project

RDP-001 EEG Headset Not
Working

4*4 16 Spare Headset or Switch Projects / Make sure it
works VERY early

2*1 2

RDP-002 Poor Time
Management

4*2 8 Keep referring to the plan and the Gantt chart
alongside regular meetings

1*2 2

RDP-003 Diversion Externally 3*3 9 Refer to the plan and Gantt chart. Team can
ground one another

2*2 4

RDP-004 Financial Constraints 3*3 9 We’ll have to share the expenses 2*2 4

Page 25

RDP-005 Compliance and
Standards

5*2 10 Ensure that Safety and Ethics are upheld
throughout the whole project

2*1 2

RDP-006 Scope Creep 5*3 15 Refer to the plan alongside weekly meetings and

grounding one another

2*2 4

RDP-007 The Testing
Environment is not
suitable

5*2 10 Refine Algorithms for filtering noise 2*2 4

RDP-008 Disagreements 5*3 15 Discussions on changes and decisions during

meetings to voice opinions professionally

2*2 4

RDP-009 Lack of
Communication

5*2 10 Weekly meetings, outside communication and
social apps

2*1 2

RDP-010 User Participation 2*5 10 The Team can test on themselves 2*6 6

RDP-011 Financial Constraints

from the University

3*5 15 The Team can use their funds 2*2 4

RDP-012 Miscommunication
between the Team and

the Supervisor

3*3 9 Weekly meetings with the supervisor 2*1 2

RDP-013 Hard-disk Failure 5*1 5 GitHub Repository and Local Backups 1*1 1

RDP-014 Hardware Failure 4*3 12 The Team buys new components, or we use
spares we can find

2*2 4

 -Risk to Users of the

Product

RUP-001 Electric Shock 5*3 15 Safety Testing with the Team 2*1 2

RUP-002 Injury to the Arm 5*2 10 Safety Testing with the Team 2*1 2

 -Electronic Risks

RER-001 Pi-5 PolyFuse
tripping/popping

5*4 20 Schematics, circuit diagrams, visual inspection,
and voltage and current flow testing

5*2 10

RER-002 Incorrect Wiring 4*4 16 Schematics and circuit diagrams with a
continuity multimeter testing

4*1 4

Page 26

RER-003 Bridging Connections 5*4 20 Consistent cleaning during the build process and
following the preplanned circuit diagram

5*1 5

RER-004 Over-Heating 5*3 15 PDU Case CAD design, using the SolidWorks to

visualise the whole complete structure

4*1 4

Page 27

What has changed?

Here’s a summary of the most significant changes in the risk management plan, focusing on

the most impactful risks:

1. Internal Risks (Team Member-related)

• RTM-001 - Stress and Burnout:

Change: Emphasis has been placed on following the Gantt chart and taking regular

breaks (weekends/holidays) to manage stress and burnout.

What’s Changed: Mitigation strategy refined, reducing residual risk from 20 to 2.

• RIM-004 - Inappropriate Use of GIT:

Change: The team will familiarise themselves with GIT through practice projects and

ensure proper branching practices.

What’s Changed: The risk mitigation was added, lowering the residual risk from 15

to 5.

2. Project Derailment Risks

• RDP-001 - EEG Headset Not Working:

Change: The team now ensures the headset is tested very early, with a backup plan

(spare headset or project switch) in place.

What’s Changed: Mitigation refined; residual risk dropped from 16 to 2.

• RDP-002 - Poor Time Management:

Change: Focused on regularly referring to the Gantt chart and having consistent

meetings to manage time effectively.

What’s Changed: The enhanced plan reduced residual risk from 8 to 2.

• RDP-006 - Scope Creep:

Change: Weekly meetings and strict adherence to the plan to prevent the scope from

expanding beyond what was agreed upon.

What’s Changed: Residual risk reduced from 15 to 4.

• RDP-007 - Testing Environment Not Suitable:

Change: Refining algorithms for noise filtering as a mitigation to ensure the testing

environment is viable.

What’s Changed: Residual risk lowered from 10 to 4.

3. Risks to Users

• RUP-001 - Electric Shock:

Change: The team will conduct thorough safety testing within the group to ensure no

electric shock hazards exist before user testing.

What’s Changed: Residual risk has been significantly reduced from 15 to 2.

• RUP-002 - Injury to Arm:

Change: Similar to electric shock, safety testing within the team ensures that injury

risks are managed early.

What’s Changed: Residual risk reduced from 10 to 2.

Page 28

4. Electronic Risks

• RER-001 - Pi-5 PolyFuse Tripping/Popping:

Change: The risk of fuse tripping has been mitigated by using detailed schematics

and circuit diagrams and performing voltage/current flow testing.

What’s Changed: Residual risk reduced from 20 to 10.

• RER-002 - Incorrect Wiring:

Change: Schematics, circuit diagrams, and continuity testing are emphasized in the

mitigation.

What’s Changed: Residual risk reduced from 16 to 4.

Summary of Key Updates

• Refined mitigations focus on early detection, continuous monitoring, and specific

actions (such as testing and adhering to plans).

• Residual risk reduction in critical areas like time management, EEG headset

functionality, scope creep, and safety testing demonstrates improved preparedness.

• New risk mitigation strategies for GIT usage and project derailment have been

implemented to improve project flow and prevent setbacks.

These changes ensure the project is more resilient and well-prepared for unforeseen

challenges, with a focus on key risks that could significantly impact the project’s success.

Page 29

Design
This section presents the key design decisions behind the hardware, software and system

architecture. It outlines how each element was developed to meet usability, modularity and

performance project goals.

Bill of Materials

Arduino Uno R3 Emotiv Epoc X Mosquitto (MQTT) SolidWorks

Assorted M3

Fasteners

Foam Tape Node-RED Velcro Straps

Craft Foam Hot Glue PLA Filament Windows Laptop

Docker INA226 with 0.01Ω
shunt resistor

PowerShell Wire, solder and
connectors

DServo 35kg Jetson Nano Python

Emotiv Cortex Limit Switch V-156-

1C25

Relay SRD-05VDC-

8L-C

Emotiv BCI

The Emotiv Epoc X 14-channel EEG headset was used as the primary brain-computer

interface (BCI) for capturing user-intended neural signals to control the robotic arm. The

headset enables non-invasive monitoring of brainwave activity and transmits processed

cognitive data to the system using Emotiv’s proprietary software suite. The primary tools that

we were able to utilise included:

• Emotiv Pro – for device connection, signal quality assurance, and real-time

monitoring.

• Emotiv BrainViz – for visualising and interpreting the frequency bands and cognitive

states.

• Emotiv BCI – training the control outputs from specific user-intended brain activities.

BCI Testing Environment

In typical academic or clinical research, EEG signal acquisition is performed in controlled

environments such as Faraday cages or signal-shielded rooms to reduce environmental

interference and improve signal-to-noise ratio. “To ensure good quality digital EEG recording

in clinical use, the following standards have been adopted for recording, storing, reviewing

and exchanging EEGs among clinicians and laboratories.” [Nuwer et al., 1998] However, we

intentionally opted not to replicate this setup. Our goal was to evaluate how robust the system

would be in a typical home setting, which is the intended real-world deployment environment

for a rehabilitative BCI device.

Even though clinical testing environments are common [Alexander, J. Casson, 2019], we

designed our protocol around home use cases. A realistic home setup might include a TV, Wi-

Fi routers, phones, and other electronics that can generate electromagnetic interference. We

simulated this by running tests in a room with a desktop PC and two active mobile phones all

connected to the internet and Bluetooth earphones connect to one of the mobile phones. This

Page 30

allowed us to understand how resilient the system was to interference in uncontrolled

settings.

Environmental Risk – EEG Noise

EEG systems are highly sensitive to electrical and motion-based artefacts [Alexander, J.

Casson, 2019]. In our case, common sources of interference included Bluetooth traffic,

inconsistent electrode contact due to user movement, and RF noise from mobile devices.

Despite the lack of isolation, signal quality was generally adequate due to the real-time

diagnostics provided by Emotiv Pro. This allowed us to adjust electrode positions and verify

signal quality before each training or testing session. The system’s usability in this setting

supports its suitability for unsupervised home rehabilitation tasks, provided that best practices

(e.g. minimal movement, proper contact) are observed.

Emotiv Pro

Emotiv Pro is useful for examining the fundamental interaction between thought and what the

BCI can see. It offers real-time visualisation and signal diagnostics across the 14 EEG

channels on the Epoch X.

• Channel Monitoring: The software displays each of the 14 electrode channels as a

graph. These channels are mapped to the international 10-20 system for EEG

electrode placement:

o AF3 and AF4: Located on the anterior frontal lobe, monitoring prefrontal cortex

activity.

o F3 and F4: Positioned on the left and right frontal lobes, linked to higher-level

cognitive function.

o F7 and F8: Situated on the lateral frontal areas, associated with emotional and

decision-making processes.

o FC5 and FC6: Frontocentral regions, bridging motor planning and cognitive areas.

o T7 and T8: Placed above the ears over the temporal lobes, often monitoring auditory

and language processing.

o P7 and P8: Over the parietal lobes, involved in sensory integration and spatial

awareness.

o O1 and O2: Located at the back of the head over the occipital lobe, monitoring visual

processing.

• Best Practices: Before any training or data collection session, ensuring that all

electrodes are in complete contact and have high EEG quality and signal integrity is

crucial. This requires the correct placement and properly soaked saline electrodes to

maintain consistently.

• Real-Time Feedback: Emotiv Pro provides a continuous stream of raw EEG signals,

allowing users and observers to visualise neural activity across various frequency

bands and per electrode.

Page 31

The array of electrodes allows us to see the different mental responses to stimuli. Everyone

has a unique, fingerprint-like response to commands or prompts, meaning that the data can

look very different from person to person.

For comparison, here are some different stimulus responses to discuss.

When analysing each set of EEG graphs, it's possible to determine which brain regions

exhibit electrical activity in response to specific stimuli or commands. The examples

provided show that dominant reactions are consistently concentrated in the brain's frontal

regions. This includes the prefrontal and frontal lobes, which are commonly associated with

executive function, decision-making, and working memory.

Notably, the activity remains frontal mainly even in response to commands like “push, "

which one might intuitively expect to engage primarily the motor cortex located further back

in the brain. This suggests that, for this user, cognitive processing and intention formulation

play a more significant role than direct motor planning during interaction with the BCI

system. It outlines how mental effort and focused thought, rather than sole physical motion

intent alone, can represent the same command or idea within different people.

Figure 6 - Push Command Figure 7 - Arithmetic Operations

Figure 9 - Recall of Music Figure 8 - Animal Recall

Page 32

Emotiv BrainViz

BrainViz offers intuitive visualisation of EEG data across different brainwave frequency

bands. This is particularly useful for understanding user cognitive states and identifying

patterns during training sessions.

• Wave Types:

• Delta (0.5–4 Hz): Associated with deep sleep.

• Theta (4–8 Hz): Reflects drowsiness, meditation, or frustration.

• Alpha (8–12 Hz): Indicates relaxed wakefulness, calmness.

• Beta (12–30 Hz): Linked to concentration and mental activity.

• Gamma (30–100 Hz): Connected to learning, memory, and sensory

perception.

These bands are extracted from the 12 primary EEG channels displayed in Emotiv Pro.

Understanding these patterns helps in correlating cognitive states with command accuracy

during robotic control.

The variation in brainwave activity across the four figures highlights how different mental

strategies used to trigger the same "push" command yield distinct neural patterns:

Figure 11 - BrainViz Push Command Figure 10 - BrainViz Arithmetic Operations

Figure 12 - BrainViz - Animal Recall Figure 13 - BrainViz Recall of Music

Page 33

• Figure 1 (Simple Arithmetic): This strategy activates theta, alpha, and beta waves.

Theta reflects focused internal attention, alpha indicates a relaxed but alert mental

state, and beta suggests active cognitive processing. This combination is typical of

structured mental tasks involving sequential thinking and logic.

• Figure 2 (Mental Push Against Wall): The "pure" push imagery shows theta and

alpha dominance, suggesting that motor imagery taps into subconscious focus and

visualisation, with minimal high-frequency cognitive engagement. This is likely the

most intuitive and direct representation of the intended BCI command.

• Figure 3 (Listening to Music Internally): This produced primarily theta activity.

The lower-frequency dominance suggests a passive, imaginative or emotional state,

which, while internally engaging, may be less effective for precise command

execution due to limited cognitive focus.

• Figure 4 (Recalling Animal List): This figure exhibits theta and gamma activity.

Theta indicates memory recall, while gamma is associated with higher-order

processing and memory integration. This suggests deeper cognitive retrieval

processes, which may lead to inconsistent training outcomes due to variability in

memory load.

These results demonstrate that simpler, focused mental imagery (Figure 2) produces more

consistent EEG patterns for BCI training. In contrast, abstract or memory-based strategies

(Figures 3 and 4) can introduce noise or cognitive overhead. The main issue would be

differentiating the mental imagery, which would need further testing. However, this does

suggest that training protocols should prioritise direct, visual-motor imagery tasks to improve

classifier reliability and reduce overfitting or signal ambiguity.

Emotiv BCI

Emotiv BCI enables the training of specific user mental commands and maps them to actions

on the robotic system. The software provides visual feedback on performance, model

confidence, and training quality.

• Training Process:

• Users train specific thought patterns ("push", "pull", "lift" and “rotate right”)

over multiple short sessions.

• Visual indicators assist in identifying well-trained models vs. over-trained or

poisoned models.

• Dataset Quality:

• Acquiring a good dataset created risks and problems we couldn’t have

anticipated. Getting a good dataset requires a multitude of different brain

activities; however, since we’re limited to 14 channels, it posed a few issues.

Page 34

• Good training data: Clear and consistent mental effort.

Here is an example of the best training set we got. Clear, consistent,

and range data prevent commands from getting mixed up when using

the headset.

The Push command was a mental visual image of the patient pushing

against a wall. This command was the easiest to maintain

The Pull command was simple, quick arithmetic, yet hard to maintain.

If you paused for too long, the command would drop.

The Lift command played/sang a song in the patient's head. On paper,

this is a great decision. However, it was a struggle to receive consistent

command outputs, but it was still reliable enough for the task.

Finally, the Rotate Right command recalls a list of animals. This

command seemed to get the least response from the headset and was

challenging to output.

Figure 14 - Initial Training with 5 commands Figure 15 - Initial Training with "Drop" vs "Lift"

Page 35

• Poisoned data: This can be introduced unintentionally by distractions

or inconsistent thoughts. This was originally a problem when the

central patient tried to sing/play a song in their head. The patient would

also view the music video, which would cross-contaminate with the

Push command. See the image for an example of the closely related

data.

Additionally, there should always be two people attempting to record

data: a patient and an operator. Below is a poisoned data set where the

patient accidentally accepted a 0/100 training piece. Since Emotiv is

locked down and doesn’t allow you to undo or revert data, the entire

data set was poisoned, which incidentally contaminates ALL of the

data.

• Over-trained models: This was also an unforeseen risk of

overtraining. The best spots seem to be between 10 and 20 sets.

Anything over 25, you risk overtraining the command, and it can

eventually become poisoned or useless. As stated above, the team's

primary patient began visualising a music video with the song they

were playing in their head, and this began to bring the data points on

the graph too close together and became very hard for the patient to

distinguish between the two commands. In this application, you don’t

want to be mixing commands.

• Best Practices:

• Stop training if concentration wanes.

• Avoid creating too many actions at once.

• Avoid overtraining a specific dataset.

• Only proceed once the system gives high consistency scores for a command.

Figure 16 - Full Command Set

Page 36

When observing someone during training, although a user may feel fine, you can often notice

mannerisms showing fatigue or stress, which should be brought up to the user to help follow

the best practices mentioned above. A user may not at first realise when they are starting to

show fatigue, as they may not have learnt what the mental fatigue from thought and BCI

training feels like if they haven’t used a similar system before.

These changes can be evidenced through tone of voice, changes in breathing – e.g. sighs or

heavier breathing – or facial expression, with fatigue often showing as sunken features on the

face or more vacant eyes.

Stress can affect not only concentration, but also data quality, as their state of mind differs

from when the command was first recorded, or their brain can begin to wander. Fatigue can

also reduce data quality. The brain may not create as vivid an image or thought as the

original, leading to worse quality being fed into the already unforgiving algorithm.

Page 37

Hardware

This section details the physical components used to build the system, including electronic

modules, mechanical parts and structural materials. Each item was selected to balance

functionality, cost and ease of integration within a wearable exoskeleton.

Mechanical

This section outlines the mechanical design of the exoskeleton, including 3d-printed

components, joint mechanisms, and fastening methods. The design prioritises comfort,

durability, and ease of assembly for rehabilitation use.

Approach

The exoskeleton design process began with creating the bicep brace, which was a critical

starting point as it serves as the primary interface with the body. The brace provided a fixed

point from which the rest of the system could be developed and expanded, with placement

and adjustment of additional elements occurring around it.

We opted for a modular approach for the brace using two C-shaped cups, similar to crutch

designs. This choice was practical because it allowed for interchangeable components,

enabling easy modifications and iterations without reprinting the entire bicep section

completely. This flexibility ensured the system could be tailored to different users, as parts

could be resized or adjusted to fit varying arm sizes. Furthermore, straps allowed additional

size variation within the same-sized cups, adding to the system’s adaptability.

Figure 17 - Bicep Arm Adaptability

Page 38

The design process included measurements of Harvey to ensure each component fit him

properly without being excessively bulky. Since the system was intended for prototyping and

rehabilitation, it was essential to maintain a usable, if unrefined, form factor that could be

worn during testing and demonstrations.

Working within the constraints of available equipment and components, we made a conscious

decision to prioritize the system's technical feasibility instead of achieving full mobility.

More advanced manufacturing methods and materials could theoretically enable smaller,

more substantial parts, but given our setup, we focused on achieving functional reliability

using accessible means. PLA was chosen as the primary material due to its fast print times

and suitability for rapid prototyping. This allowed us to quickly iterate small components,

especially, and iterate design elements to fit between, even if PLA’s strength and durability

fell short of theoretical alternatives.

Once the bicep brace was established, the next critical step was determining the optimal

placement of the servo on our test subject, Harvey. Ensuring that the servo allowed proper

elbow flexion was essential for testing the effectiveness of the mechanism. We positioned the

servo at the elbow crease. This area exhibits minimal movement when the arm is straight,

ensuring the system does not hinder the elbow's natural motion.

With these foundational elements in place, we focused on designing the system to allow for

iterative development and easy modification. A key factor in this approach was the limitations

imposed by our 3d printing setup, particularly the Ultimaker 3. This printer had a fixed build

volume, which set a size constraint for the parts. However, it was crucial to maximise the

length of components that would extend along the arms. More significant parts reduced the

fastening points, decreasing potential failure points at these critical joints.

Another important consideration was the need for frequent iteration. Design changes were

inevitable as we adapted to new insights, unforeseen challenges, and evolving safety and

Figure 18 - Elbow Servo Motor

Page 39

performance requirements. This iterative process allowed us to refine and improve the system

continuously.

The design also required careful consideration of part separations. Making each component a

separate print was necessary for several reasons, including accommodating the printer's build

volume and allowing for individual modifications. This made the process more flexible and

responsive to design changes, while reducing the complexity of reprinting entire sections of

the system for small quality-of-life or mechanical tweaks.

The design elements of the exoskeleton were broken down into various parts, each designed

to serve a specific function within the system or to support a safety mechanism. Key

components included:

• Bicep brace

• Arm cups

• Elbow servo mount

• Elbow non-powered pivot

• Elbow upper and lower limit switch mounts

• Forearm brace

• Wrist collar lower mount

• Wrist collar upper mounts

• Wrist mount side bars

• Wrist collar

• Wrist servo mount

• Wrist limit switch mount

• Wrist linkage bar

Each component was individually printed, paying attention to print orientation and infill

density and balancing strength, material, and time efficiency. This ensured that the parts were

durable where necessary for safety and function, while minimising the downtime between

iterations that could complicate the printing process for future additions. Additionally, the

modularity of the design allowed for easy repair when things did unfortunately go wrong,

with individual reprints keeping downtime minimal and helping to maintain momentum

during development and testing.

Designing individual parts was simple yet time-consuming, as one had to consider both the

size and spacing of arts relative to where the design could be foreseen and maintain an

awareness of hole placement for heat-sunk threaded inserts. Most construction uses M3 bolts,

threaded inserts, and nuts throughout the design. This made assembly easy and meant that

designs were consistent and did not require multiple tools to assemble and disassemble. Only

a hex key and a screwdriver are needed to turn bolts, and pliers or sockets can hold nuts in

place.

Page 40

Designs also had to be designed with the awareness that certain elements needed support to

maintain quality. Although some designs could be printed, adding extra design elements,

especially on the exposed wrist servo bracket, was necessary to prevent damage in axes that

do not align with the layer lines' optimal strength.

Mechanical Analysis of Parts

To save printing time, some analysis was done on the parts to check that they wouldn’t buckle

under the pressure from the user's arm or the force exerted by the servos. This was prioritised

on the parts expected to exert the most stress on them. In contrast, others were deliberately

designed to have an extremely high safety factor, preventing the need for analysis on all parts.

The high stress parts were often in contact with the servos or around the elbow or wrist joints,

as these have high momentary or single point forces.

The parts all use PLA (Polylactic Acid), which can be printed with different infills. Because

of this, each part could be modelled with different infills, resulting in varied results. At 100%

infill, the Young's Modulus was taken as ~3.2 GPa. At 50%, it was taken as ~1.25 GPa. At

20%, it was taken as ~0.3 GPa. This shows a dramatic shift in the material strength between

infill levels, which could result in very different performances from the different parts. It also

means that while the lower infill could have been used for the less stress-intensive parts, an

infill that was too low could also result in those parts failing.

In addition, the average mass of the human arm is ~5% (reference: the human machine) of

the weight of the entire human body. The subject who tested the arm had a mass of close to 4

kg. This meant that stress and strain calculations based on the initial values given were

possible.

A factor of safety of two is standard for a project of this nature so that the parts can withstand

any extreme scenario that may be unforeseen in the mechanical analysis. While the expected

loads may be lower, once the prototype is operational, environmental factors may align to

produce forces higher than anticipated during the design phase.

Rigid Link:

The rigid link required the most trial and error, as it was only a small part compared to the

rest of the arm. This meant that parts could be fabricated and broken much quicker than any

of the others.

The rigid link is the part which connects the wrist-mounted servo to the bearing on the inside

of the arm, which translates the movement between the two. Because of this, it needs to be

able to withstand high shearing stresses, particularly while still being a small and thin part to

fit within the confines of the parts surrounding it.

Page 41

The cross-section of the part across the rigid link is a 5x5mm square which means that the

flexural stress and strain should follow a parabolic distribution across the height of the

square. The Equation is as follows:

Where:

 σ = bending (flexural) stress (MPa)

M = applied bending moment (Nmm)

y = distance from the neutral axis to the point of interest (mm)

I = Second moment of area (mm^4)

Figure 19 - Wrist Linkage Bar

Page 42

For a rectangular bar:

And:

So, in this case:

I = 52.08mm^4

y = 2.5mm

σ = 68MPa

Solve for maximum moment:

Any moment above this value would result in the part breaking.

Next is to find the breaking load:

P=4MmaxLP=4MmaxL

Where:

P is the breaking load

L is the length of the beam

P=4×1416100=56.64NP=4×1416100=56.64N

Page 43

This value is above the expected load, so the part is adequate for the system. This showed

that 85% infill would be adequate for the part's usage.

The everyday stresses on this part aren’t an issue, as the high-density infill results in the part

being resistant to normal loads. If the infill had been lowered, this may have resulted in

concerns. However, all issues with this part were related to its bending down its longest side.

Also, it will always fail due to the bending stress before any other method, such as buckling

or axial stress. There was also no rotational force put onto this part, meaning that shear and

other rotational stresses didn’t have to be considered.

Bicep Upper & Lower:

The parts for the bicep were adapted for the comfort and ease of use while still being able to

hold the full weight of the arm. While it wasn’t likely that the entire weight of someone’s arm

would be resting on one of the pieces, this was considered an extreme circumstance, with

factors of safety being considered as well. The area for these parts was more complex to

calculate due to their distinct “C-shaped” design. In addition, we decided to assume that the

dispersion of the forces is uniform across the surface or the “horseshoe” element of the part.

In contrast, the actual forces will be higher at the centre and less concentrated at the edges

due to the nature of the design.

Figure 20 - Bicep Clamp

Page 44

The upper Bicep is a broader part to allow the upper bicep to fit through it quickly. As well as

the measurements shown in the figure above, the part has a depth of 20mm, providing a

suitable surface area for the arm to rest on. The highest possible stress can be represented by

a rectangular load of 4 kg (39.2 N) across the thinnest point of the structure, which is 20mm

thick. We assume that the contact parallel to the arm only represents 5mm, which could be an

underestimation for safety reasons, as a more spread load could lead to a false safe result.

This also represents the weakest point of the lower bicep piece, which has a very similar

design. This was testing the parts at 50% infill to see if print time can be reduced as well as

material usage without ramifications on the part stability.

Calculate the Area where the force is acting:

Work out compressive stress:

Work out the max compressive strength for 50% infill (Given compressive strength of PLA at

100% infill is 65 GPa):

Therefore, the predicted compressive strength for the part is far below the material's breaking

point and can thus be printed at lower infill densities. Also, considering that it is unlikely for

the entire weight of the arm to rest on one-part, large cutbacks can be made from this and

other parts of the arm.

Elbow Plates

The elbow plates proved challenging from a design standpoint as they considered a wide

range of stresses during operation. The primary stress that had to be considered for this part

was bending stress, as there needed to be limited contact points across the elbow to facilitate

movement from the servo. This, however, causes high point loads at those contact points,

resulting in high momentary forces across the part. Because of this, it was immediately

apparent that this would have to be a higher infill part due to the bending stress alone.

Another stress to consider is the axial stress caused by the lower arm wanting to pull the

structure away from the bicep section of the system. This had less of an effect on the

structural integrity than the bending stress. However, it was still higher than initially

expected. There is also a high amount of shear stress going through the part's cross section

due to the servo's rotating motion and the bicep parts wanting to pull the part up while the

lower arm is acting with gravity to pull the structure down.

Strain should also be considered for this part, as it could cause it to deform over time, leading

to a change in shape or potential breakdown later on.

This is the part that would have to be replaced the most frequently in real-world use, as it is

essential to the structure itself while also facilitating movement, which will wear the part

more quickly than the stationary parts found elsewhere in the system.

Page 45

Figure 21 - Elbow Plate

The part is designed to be broad with multiple points of contact on each connection to ensure

that there isn’t an unreasonable amount of wear on a particular connection. The depth of the

part is 5mm, meaning there could be potential for tension to cause bending in high-stress

areas. This particular connection is holding the servo, which is articulating the elbow joint,

which is held in the gap left in the middle of the part, which may cause it to be less prone to

breaking than the other part due to weight distribution.

Finding the Bending Stress of the Elbow Plate:

Where:

M = bending moment

y = distance from neutral axis

I = second moment of area

Calculate the bending moments (when taking the neutral point as 10mm from the centre of

the connections, assuming half an arm's weight is on each connection) (weight of a 35Kgcm

servo is 3.4N):

Page 46

Calculate the moment of Inertia for the rectangular section:

Calculate the bending stresses:

Therefore, the elbow plate's design has significantly reduced the likelihood of it being bent to

the point of deforming or breaking. The elongated design in the vertical direction

significantly reduced the stress on the cross-sectional area of this part, resulting in the stresses

being reduced to near-negligible levels. Also, there are two of these pieces, one on either side

of the arm, resulting in even more stability.

Overall, this analysis, whether fully fleshed out or just roughly worked out on paper, allowed

us to understand how the parts would behave before printing. In addition, it could warn us

about parts that could potentially fail ahead of time, meaning that we could hold back a print,

saving time and resources. When print times can potentially exceed multiple days, this was a

effective way of testing designs.

Page 47

Iterations and Problems

Most of the problems arose in the fabrication and assembly of the system.

A common recurring issue was that parts would print with the walls under-extruded and not

fully attached to the part, only at the corners. This issue was fixed by changing the

temperature of the printer's nozzle and increasing the flow rate. This, along with the most

reliable printer, allowed parts to be consistently printed at the desired quality to ensure

reliability with the system.

The second major issue was the available hardware. The initial servos were stronger than

those used in the final implementation. However, they didn't come without their own quirks

and learning experiences. They remembered the final position they were in when they lost

power. However, they also assumed they hadn’t moved between then and being turned on.

This memory then limited the servo to 180 degrees as specified in the data sheet [Appendix D

– DS3240 Servo Datasheet] however they also adjusted where the limit of the angles was

relative to the angle they thought they were at, not based on a true specified data point or

encoder. This meant that if the arm was powered off at full flexion and then turned on flat,

when told to go straight, it would power past that point and go to the specified angle as it had

no knowledge of the angle being reflexive instead of where we as people wanted it to go.

Once we knew this was how the servos worked, we switched to some other ones with limited

angles that return to a fixed position for a given angle rather than scaling angles based on

where they thought they were from their memory. This made not only designing but also

testing to check for elements needing iteration and modification, as positions were then

consistent.

After solving these significant issues, iterations came as adapting parts to meet strength

criteria to withstand forces, as parts showed flex and deformation when under a load with

resistance from the human arm.

These iterations included adding thickness and changing infill of the parts where points of

failure were shown to be, mainly where layer lines and fasteners had concentrated the effects

of forces acting upon them.

A prime example of this type of iteration was the bicep brace, as the infill around one of the

heat-sunk threaded inserts gave way under a load-bearing test using the servo while the

device was being worn. This was a test aimed at seeing whether the servo could move the

arm as it stood, but the bicep brace flexed where the servo bracket wings were, and the group

heard an audible crack. This was fixed within the day as it was an increase of infill from 30%

to 50% and the thickness of the parts and number of walls was increased at the points of and

around the failure point.

When testing the infill strength of parts, we used the smallest and thinnest part—the wrist

linkage bar—to test strength. Having tested an earlier iteration of the bicep brace, it showed

no external failure under 10kg of load; however, the linkage bar dubbed “type I” for testing

purposes yielded to breaking at 10kg.

For testing we used “types” of bars of “I - VII” and testing discussed in a following section

will further explain this; leading to the thought processes of upping infill for parts mentioned

prior to be implemented.

Page 48

Later iterations also included changing the wrist collar to have a slot for a belt, which was

quickly dismissed after viability of moving it with such a mechanism was deemed too

advanced for the available time with the lack of resources we had. Instead of this, we opted to

use the rigid bar and just push and pull the collar within a limited range as can be seen in the

final design.

Realisation of the Mechanical Design and Orthographic Views

The exoskeleton was developed as a semi-modular system to bring the design to life. This

modularity was central to both the assembly process and future adaptability, allowing parts to

be easily replaced, upgraded, or adjusted without reconstructing the entire system. The

various sections were designed to connect using standardised mounting holes and were

physically connected using M3 fasteners and, where possible, heat-sunk threaded inserts. In

areas where mechanical fastening was impractical or felt insufficient, hot glue was selectively

used as to provide structural reinforcement or positional stability. Engineering drawings for

measurements and parts not discussed explicitly can be found in [Appendix A – Engineering

Drawings]

Page 49

Figure 22 - Isometric view of entire system

The structural elements of the system were entirely fabricated using FDM 3D printing.

Components that could not be 3d printed - such as servos and limit switches- were sourced as

off-the-shelf hardware. Other non-printed elements, like the interfaces for mounting to a

user's arm, were made by hand using craft foam.

Page 50

Figure 23 - Upper Bicep Cup Foam

This hybrid approach, combining printed and non-printed elements, allowed the system to

meet its mechanical and ergonomic requirements while remaining accessible and easily

manufacturable with the tools and materials available to the team.

When considering parts such as the forearm brace, printing orientation and making the part as

long as possible was important. Despite the necessity of staying within the size limitations,

reducing the number of breaks within a section helps reduce possible undesired movement as

parts are then connected to the lowest possible number of other parts in a row when

facilitating the required length to meet the requirements for forearm length. Having the wrist

mechanism on a single large piece and then building off from it also maintains the thought

process of keeping minimal parts that shouldn’t move separately as one. As the rotation

mechanism required iteration, the mounting to the rest of the frame could be tightened to

allow consistency when testing each change to find a system that worked reliably. This

became especially poignant when testing the limit switch placements, as these required the

correct spacing to actuate reliably before rotation too far became an issue without ending

travel prematurely.

Page 51

Figure 24 - Isometric View of Forearm Brace

Figure 25 - Isometric View of Wrist Mechanism Mount

Page 52

Above the elbow was a combination of the bicep cups and the bicep brace. These parts are

the system's root, mounting the rest of the system to the user. These parts were printed in

differing orientations when compared to each due to their sizing and required use orientation.

Since the bicep brace takes a lot of the forces applied due to the user and system, it was

important to ensure that the weight of everything that it precedes was not applied

perpendicular to layers, as the part is thinnest in its axial direction going down the back of the

bicep. Instead, it is pulled parallel to the layer lines, meaning that any axial load would pull

along the layer lines, having an increased surface area across each layer to prevent shearing

along them.

The cups were printed with the “C” shape flat on the bed. Despite this putting the force

exerted by the fasteners under load perpendicular to the layer lines, it allowed the curvature

of the cups to be more rounded, as printing these in the same “C” orientation as the forearm

brace would make them appear “stepped” due to the layers, especially at the centre of the

curve.

Page 53

Figure 26 - Difference between print layer orientations

Page 54

Figure 27 - Bicep Cups Design Iterations

Page 55

Figure 28 - Isometric View of Bicep Brace

Page 56

Justification of Final Design

When finalising the design, many final decisions were made, and reasons for the design

choices were given.

Firstly, given the testing of various parts by casual, accidental, and deliberate means, the infill

of parts between 25% and 50% for any major parts and the infill of the smaller parts ranging

even further up to 85% (due to the lack of noticeable benefit from higher percentages) is

justifiable for a range of reasons.

It has made the parts durable, and the oldest parts that remain in use on the final construction,

even when put under a duration of continuous operation, have withstood the use and testing

over time. This was an accidental test caused by a script Leo made for the video to have it

move for some of the shots. During this accidental stress test, we found that the shaking for

around an hour of use without someone using it to dampen the vibration and moderate

changes in angular velocity loosened and, in one case, fully unscrewed nuts and bolts. This is

partly because the nuts were not tightened to a fixed and tested torque value and were

primarily done by hand with a socket and hex key to be easily disassembled again for repairs

or alterations over the development period.

The servo directly interfacing with the elbow actuation allows for simple and effective

angular control. However, it also means that the weight felt by it due to a user's arm and the

system itself was all on one servo. This was done to keep the design as simple as possible to

showcase the technical capability of the over-arching concept of the control mechanism

rather than perfect overall operation due to the prototype nature of the project. This same

concept of it being a technical showcase is also justifying the wrist rotation servo, only

enacting a function of rotating approximately 45 degrees, as it shows the function and control

without over-complicating the mechanical aspects of working with an angle-limited servo for

a large rotational motion adjacent to its placement to the collar.

The use of curved crutch-style cups padded with foam was decided upon due to the

availability of materials facilitated by what could be acquired from our own and the

supervisors’ available resources. This allowed the parts in contact with body parts to be more

comfortable and ergonomic since it isn't hard plastic rubbing on skin or digging in. This is a

fast, simple and effective method of accomplishing the minimum requirements for a

prototype. However, it allows for future iterations to build upon this if desired, where a better

attachment method than hot glue and foam tape could be implemented, possibly with a more

comfortable foam and a fabric cover.

Testing

When testing the strength of the parts, a range of dedicated and group tests were conducted,

varying in scientific capacity. The most detailed of these was the strength testing of the wrist

linkage bars—specifically, the seven different types previously mentioned.

To carry out these tests, we used luggage scales to measure the load applied, which is why the

results are recorded in kilograms. Although not ideal, this method was chosen due to the lack

of suitable calibrated weights to hang from the parts for a truly scientific test. The scales were

pulled manually until the breaking point was reached, introducing some imprecision but still

offering usable comparative data.

Page 57

Initial testing was focused on determining the breaking point of the earliest bar prototype

following material test one (M-T01) as described in the M-T series, later referred to as "type

I." The peg section, which slots into the wrist collar, consistently failed at or below 1kg of

load, a result that repeated across all other variants regardless of changes to infill percentage

or pattern, meaning that a concise result was not acquired. This indicated that the peg’s

inherent geometry, rather than its internal structure, was the primary point of failure, failing

above the chamfered base, yet not shearing directly on layer lines as expected. For the main

body of the bar, “type I” showed a breaking point of approximately 10kg. This established a

rough upper limit for the bar designs and helped to define their mechanical boundaries.

However, the sudden snapping of parts during this testing posed a risk to both the tester and

the equipment, so later tests avoided complete destructive testing when the expected results

were already reasonably well understood.

Subsequent testing employed a measured bend test. Testing was not able to simulate the axial

loading the part would experience in use, as we lacked equipment capable of applying a

load along the length of the bar and in line with the print layers. Instead, the bending test

applied force perpendicular to the layer lines, which is not the primary direction of stress

during normal operation.

Due to the essential nature of the test setup and variability in print quality, the data collected

should be seen as indicative rather than definitive. Print inconsistencies, manual measurement

error, and the non-standard method of load application all contribute to a significant margin

of error in the results.

One precise observation from these tests was that for small parts of this kind, variations in

infill percentage had a minimal effect on overall strength, at least when using the same

internal pattern at high infill densities. This suggests that for certain design elements,

especially those prone to higher stress, shape and wall count play a large role in mechanical

performance that infill density alone cannot match. A lot of this strength and lack of

differences shown will be due to all having the same number of walls, and top and bottom

layers.

Each type had the following specifications:

• I - 85% gyroid

• II – 85% cubic

• III – 60% gyroid

• IV – 60% cubic

• V – 60% lines

• VI – 85% gyroid, ½ speed

• VII – 100% gyroid

Page 58

Table of bending under load in mm

Type 1kg load 3kg load 5kg load 7kg load

I 85% gyroid 5 14 27 38

4 15 28 40

II 85% cubic 5 14 24 38

5 12 25 36

III 60% gyroid 6 20 27 33

6 22 29 32

IV 60% cubic 6 19 26 37

7 18 25 36

V 60% lines 7 17 25 40

7 19 21 42

VI 85% gyroid, ½ speed 4 14 25 36

4 15 28 39

VII 100% gyroid 3 14 26 35

4 14 27 33

Page 59

Some of the other testing came from having either old versions or spare parts that could be

tested without detriment to development. This testing was helpful as it allowed elements that

had remained unchanged between iterations, such as the main frame of the bicep brace, to be

tested. This allowed us to test that element of the design while developing the other sections,

and allowed for simultaneous design, fabrication and evaluation when appropriate.

During a partial systems test, we found that under a 10kg load, although there were cracking

noises, it was suitable for use and inclusion in the design unchanged, as it exceeded

the expected loading by the group for the prototype. During a systems check, it was also

observed, as previously mentioned in the iterations section, that the left servo wing failed

after a slight modification to one of the angles, yet the main body of the brace itself remained

strong.

Following previous stages, test two (M-T02) yielded positive results for most components,

indicating that friction did not pose a significant issue throughout the system. However, one

exception was the main wrist collar, which required a slight adjustment. Due to the inherent

imperfections in 3d-printed circular geometry, some play was necessary to ensure functional,

reliable movement despite exporting STL files with high-resolution settings optimised for

round features.

Figure 29 - Type I bar break

Page 60

While lubrication was considered as a solution, allowing for minor clearance between mating

parts ultimately proved more effective. This tolerance gave the wrist collar just enough

freedom to rotate smoothly between the upper and lower bracket mounts without

compromising positional stability. The part remained reliably seated during operation while

maintaining its ability to move freely.

Material tests three and four (M-T03, M-T04) also passed successfully. During live

demonstration, testing, and filming, the exoskeleton arm was worn and actuated with

functional actuation for both elbow flexion and wrist movement. The system stayed securely

in place on the user throughout the activity, confirming the validity of mounting elements

under real-world conditions with the Velcro straps.

Electronic

This section outlines the electronic components and control logic used to drive the

exoskeleton. It details how microcontrollers, sensors and power system were integrated to

enable reliable, safe and responsive actuation

Approach

The electronics subsystem was designed to be modular, robust, and adaptable to ongoing

design changes. It began with identifying the critical components required for safe and

responsive actuation—servos, sensors, controllers, and power regulation—and arranging

them in a way that allowed for iterative development and straightforward debugging.

At the heart of the system are three Arduino Uno boards, each handling a specific role: motor

control via PWM, current monitoring with the INA266 sensor, and digital input processing

from limit switches and emergency stop mechanisms. This decentralised approach offloaded

low-level tasks from the Jetson Nano, which instead manages higher-level logic and wireless

communication via MQTT.

Power was a central concern from the outset. To ensure stable operation, two 12V 6A

batteries were used in parallel, feeding into a regulated power distribution setup. This

configuration not only supported the servos' high torque demands but also allowed sufficient

headroom for current spikes during rapid motion. Each servo line is protected against

overcurrent events, with fail safe triggered both in software and through inline hardware

mechanisms.

Wiring was kept as clean and maintainable as possible. Dupont jumper wires were avoided

for high-load connections, replaced with soldered joints and secure terminal blocks where

necessary. Serial communication between the Jetson Nano and each Arduino allowed reliable

data exchange, while USB connections simplified both power delivery and debugging.

A primary focus was on ensuring that one subsystem's faults would not propagate to others.

This was achieved by isolating power rails, using individual fuses, and monitoring system

health continuously through telemetry data received from the INA266 and limit switch

triggers.

The electronic layout evolved throughout the project as reliability issues emerged—

particularly regarding I2C instability and early power delivery failures. Lessons from these

Page 61

setbacks led to a more fault-tolerant design, with redundant safety layers and extensive

logging via Node-RED and MQTT to allow for quick issue identification and resolution.

Every component—from relays and limit switches to servo headers—was tested in isolation

before being integrated into the system. This strategy ensured that when errors did arise

during full-system tests, they could be traced with minimal debugging overhead.

Iterations and Problems

The electronics subsystem underwent several iterations as the system evolved, and reliability

issues surfaced during testing. Early designs relied heavily on the Jetson Nano for both

processing and I2C communication, but persistent instability—particularly with I2C buses

and peripheral interference—led to a shift toward decentralised control using three Arduino

Unos. This change improved responsiveness and made debugging individual subsystems

significantly easier.

One of the first challenges was voltage drop across long power lines, which caused

intermittent servo resets under high load. This was mitigated by switching to thicker gauge

wires and relocating power distribution closer to the load points. Similarly, early versions

used off-the-shelf jumper wires, which often failed under vibration or torque; these were later

replaced with soldered joints and screw terminals for reliability.

Power delivery itself posed a number of issues. In the initial prototype, all components shared

a single rail without adequate current sensing or isolation. This led to system-wide brownouts

when servos stalled. The introduction of individual INA266 current sensors and inline fusing

helped isolate faults and prevent cascading failures. Combined with software logging over

MQTT, these changes allowed for quicker identification of unsafe operating conditions.

The USB serial connection between the Jetson Nano and Arduinos also proved problematic in

early tests, particularly when multiple devices attempted simultaneous communication. A

structured messaging protocol and staggered polling intervals were introduced to prevent data

collisions and ensure that sensor readings remained consistent across test cycles.

These iterative changes were driven by real-world testing and often revealed edge cases not

caught during isolated component testing. While each revision introduced its own set of new

issues, the end result was a robust control system that could be debugged quickly, modified

easily, and scaled if necessary.

Page 62

This system diagram illustrates the full communication architecture of the exoskeleton

control pipeline. EEG data is captured by the Emotiv Epoch X headset and sent to a

Windows system, where it is processed and translated into action commands via Node-RED.

These commands are formatted as JSON and transmitted to the Jetson Nano, which serves as

the central control unit. The Nano distributes control instructions to three dedicated Arduino

boards:

• Arduino 1 receives servo angle commands and controls the PCA9685, which in turn

drives the servo motors.

• Arduino 2 monitors the state of limit switches and sends digital HIGH/LOW signals

to indicate whether physical movement boundaries have been reached.

• Arduino 3 reads real-time current values from two INA266 sensors to monitor power

draw.

All status data from Arduinos 2 and 3 are sent back to the Jetson Nano, which uses this

information to make safety decisions and can engage or disengage a physical relay that

powers the system. The result is a modular, fault-tolerant architecture that allows real-time

feedback, EEG control, and safe actuation of the exoskeleton.

Figure 30 - Data Flow

Page 63

Schematics and Circuit Diagrams

This diagram shows the wiring configuration for four mechanical limit switches (LS1–LS4)

connected to an Arduino Uno designated as /dev/arduino_limits. The switches are used to

detect end-of-range conditions in the exoskeleton’s joints and enhance user safety. LS1 and

LS2 are wired in parallel to digital pin D4, acting as redundant triggers for one axis (e.g.

elbow flexion), while LS3 and LS4 are connected to pins D5 and D6 respectively, monitoring

a second axis (e.g. wrist rotation). All switches share a common ground, ensuring consistent

reference voltage. In the software, the Arduino uses internal pull-up resistors and monitors for

pin state changes—when a switch is pressed, the pin reads LOW. This event is sent over

serial to the Jetson Nano, where it can be interpreted by safety scripts to stop or reverse motor

movement immediately. This setup provides a simple, reliable mechanism to enforce

mechanical limits without the need for analog sensing or external logic.

Figure 31 - Limit Switch Arduino Wiring Diagram

Page 64

This diagram illustrates the current sensing setup using two INA226 modules connected to

an Arduino Uno, referenced in software as /dev/arduino_ina. Each INA226 module monitors

the current drawn by a pair of servo motors—Servo 0 & 1 and Servo 2 & 3—providing real-

time current feedback to enhance safety and system diagnostics. The modules communicate

with the Arduino via the I²C bus, using shared SDA and SCL lines connected to A4 and A5

on the Arduino. Each INA226 module is powered through the 5V and GND rails, and is

placed in-line with the servo power supply to measure voltage and current directly across the

shunt resistor. The analog inputs (IN+ / IN-) are connected in series with the servo power

lines to enable precise sensing of load conditions. In software, the Arduino continuously

reads current values from each module and transmits this data to the Jetson Nano via serial.

These readings are used to detect overcurrent events and support real-time monitoring,

allowing the control system to trigger power cut-offs or emergency stop routines if abnormal

current draw is detected.

Figure 32 - INA Arduino Wiring Diagram

Page 65

This diagram shows the servo control setup using a PCA9685 16-channel PWM driver

connected to an Arduino Uno, referenced in the system as /dev/arduino_pca. The PCA9685

receives control signals via I²C communication, with SDA (A4) and SCL (A5) connected to

the Arduino. It is powered from the 5V rail and grounded alongside the Arduino to maintain a

common reference. The PWM outputs from the PCA9685 are routed to four servos (Servo 0–

3), with their signal wires (yellow) connected to channels PWM0–PWM3 respectively.

Each servo receives PWM control from the PCA9685 while sharing a common power (red)

and ground (black) line. The PCA9685 offloads the timing-intensive task of generating

PWM signals, enabling smooth and simultaneous actuation of multiple servos without

overloading the Arduino’s internal timers. This configuration supports real-time motion

control, with the Arduino forwarding angle commands from the Jetson Nano to the PCA9685

over I²C. To prevent missed signals during startup, a handshake mechanism is implemented:

the Arduino sends an "ACK" message after its setup routine is complete, ensuring that the

Jetson only begins communication once the system is ready. This design improves stability,

especially in complex boot sequences and multi-script deployments.

Figure 33 - PCA Arduino Wiring Diagram

Page 66

Figure 34 - Full Wiring Diagram

Page 67

Justification of Final Design

The final electronic layout was driven by the need for modularity, fault isolation, and reliable

performance under real-world conditions. While the original plan aimed for a more

centralised system using the Jetson Nano for all control and processing, repeated

communication errors, power inconsistencies, and debugging challenges made that approach

unfeasible. Delegating low-level tasks to dedicated Arduino Unos allowed for cleaner

separation of responsibilities, reduced wiring complexity, and simplified troubleshooting.

This decentralised architecture was particularly valuable in ensuring each subsystem—PWM

control, current monitoring, and limit switch logic—could operate independently and be

tested in isolation. The USB serial links provided a reliable communication method with the

Jetson Nano, which now handled high-level decision-making and external MQTT messaging.

This setup proved effective in both bench tests and live demonstrations, with individual faults

no longer causing total system failure.

Using dual 12V 6A batteries ensured sufficient current headroom for the high-torque servos

and eliminated brownouts observed during earlier testing phases. The addition of INA266

sensors allowed for real-time current monitoring, improving safety and offering critical

feedback during load testing. Safety was further reinforced with physical relays for

emergency stop functionality, inline fuses, and software-triggered shutdowns that could cut

power instantly in the event of an overcurrent or system hang.

Soldered joints replaced all high-load or vibration-sensitive connections to minimise signal

loss and physical disconnection. All PCB-less wiring was routed with strain relief in mind,

using screw terminals, heat shrink, and zip ties to maintain order and reduce wear during

extended testing periods.

Overall, the final design balances reliability, modularity, and real-world usability. While more

compact or integrated systems are feasible with advanced PCBs or embedded solutions, the

chosen approach prioritised accessibility, rapid iteration, and maintainability—key factors in

a team-led, proof-of-concept build.

Page 68

Software

This section details the software architecture and tools used to control the exoskeleton,

interpret EEG signals, and manage communication between system components. The

software was developed with modularity, fault tolerance and ease of debugging, using Python

scripts, Node-RED flows and MQTT messaging.

Approach

The software was designed to bridge multiple hardware layers flexibly and resiliently. Rather

than relying on a single monolithic application, the system was broken into smaller, purpose-

built Python scripts—each handling a dedicated function such as servo control, EEG

command interpretation, or current monitoring. This modular approach allowed for faster

debugging, easier updates, and improved fault isolation across the project’s lifespan.

At the system's core was a lightweight communication framework built on MQTT. MQTT

topics were routed messages between the EEG input, control scripts, and safety mechanisms.

The broker was hosted in a Docker container on a Windows laptop, ensuring compatibility

and isolation from the host environment. Node-RED served as both a flow-based

development tool and a user interface, providing a clear visual overview of signal routing and

system state.

EEG signal data was processed using Emotiv’s cloud services, which provided structured

JSON outputs in response to trained mental commands. These outputs were subscribed to via

Node-RED and relayed through MQTT to the Jetson Nano, triggering corresponding motor

commands. By using this pipeline, the team avoided the need for local signal processing—

reducing computational load on the Jetson Nano and simplifying the development stack.

Due to instability and delays in setting up ROS and Gazebo, a decision was made early in

development to drop the ROS-based control layer entirely. Instead, the system adopted a

lightweight custom alternative using MQTT and Python, which allowed faster iteration and

fewer compatibility issues. This trade-off proved effective for a prototype-level project,

where flexibility and reliability were more important than long-term scalability or ROS-

native features.

Each script was developed to run independently and report its status through MQTT topics,

making it easier to isolate faults or run subsystems in simulation if needed. For example, the

servo controller could be tested with mock EEG messages, or the current sensor could be

monitored in real time using a separate logging script. This structure also allowed easy

extension of features without rewriting the whole system.

The software stack included minimal dependencies to maintain portability. Python was

selected as the primary language due to its extensive library support, readability, and

compatibility with both Jetson Nano and Windows environments. Supporting tools such as

Docker, Mosquitto, Node-RED, and PowerShell scripts were all chosen to streamline system

deployment, testing, and monitoring.

Ultimately, the software was designed not just to function but also to be understandable,

adaptable, and recoverable. These priorities shaped the system's structure and helped ensure it

remained operable throughout iterative hardware changes and evolving requirements.

Page 69

Iterations and Problems

A major challenge in the software development process was the unpredictable reassignment

of serial ports for the Arduinos connected to the Jetson Nano. Each time the system rebooted

or an Arduino was unplugged and reconnected, Linux dynamically assigned it a different

device path (e.g. /dev/ttyACM0, /dev/ttyACM1, etc.). This caused significant issues for the

modular Python scripts, which required consistent communication with specific Arduinos

responsible for motor control, current sensing, and limit switch handling.

Initially, port assignments had to be manually updated in each script before launch. However,

this quickly became error-prone and time-consuming—especially as incorrect assignments

often led to silent failures, such as the wrong Arduino being sent PWM commands or sensor

data being misread. To resolve this, we implemented a permanent fix using udev rules. By

identifying each Arduino’s unique serial number using udevadm info, we created persistent

symbolic links such as /dev/arduino_pca, /dev/arduino_current, and /dev/arduino_limits.

These symlinks acted as reliable placeholders in all scripts, ensuring consistent behaviour

regardless of device order or boot timing.

Another critical issue emerged from the Arduino handling the PCA9685 board. Due to slight

startup delays and inconsistent boot times, the main Python script would sometimes begin

transmitting commands before the Arduino was fully ready to receive them. This resulted in

dropped messages and delayed servo actuation during system startup. To mitigate this, we

implemented a custom handshake protocol between the main script and the PCA Arduino.

At startup, the Python script waits for a specific "ACK" message from the Arduino over serial

before sending any PWM commands. This ensures the Arduino has completed its setup

routine and is actively listening. Conversely, the Arduino remains in a passive state until it

sends the acknowledgment, preventing it from missing the first command. This small

addition proved highly effective in improving reliability, especially during repeated system

tests where power cycling was frequent.

Other software issues included occasional serial buffer overruns and inconsistent data parsing

when too many messages were sent in rapid succession. These were addressed by rate-

limiting serial writes, flushing buffers before read cycles, and introducing short delays

between message transmissions. The modular structure of the software also made debugging

more manageable, as individual scripts could be run and monitored in isolation to pinpoint

faults.

Overall, these iterations significantly improved system robustness. What began as a loosely

connected set of scripts matured into a coordinated, resilient control system with clear

communication pathways, startup synchronisation, and fault tolerance—all essential for real-

world operation of the exoskeleton.

Justification of Final Design

The final software architecture was intentionally built around simplicity, modularity, and fault

tolerance—key traits for a prototype system where hardware and requirements evolved

frequently. Rather than relying on a monolithic framework like ROS, which introduced

delays and compatibility issues, the team opted for lightweight Python scripts communicating

over MQTT. This choice allowed faster development, easier debugging, and greater

flexibility in integrating or isolating subsystems during testing.

Page 70

By structuring each software component as an independent script—handling servo control,

EEG interpretation, or sensor monitoring—errors in one area did not compromise the entire

system. This was essential for iterative development and real-time testing, where subsystems

could be swapped or restarted without halting the overall workflow. Node-RED provided an

accessible interface for monitoring system state and routing messages, making the control

logic more transparent and adaptable.

The decision to use Emotiv’s cloud-based EEG processing simplified signal handling and

reduced the computational load on the Jetson Nano. Instead of building a custom signal

processing pipeline locally, the team focused on interpreting already-processed commands,

which allowed greater emphasis on system integration and reliability. This trade-off also

reduced potential technical debt and avoided the complexity of working with proprietary

EEG data formats.

Persistent symlinks for serial communication were another critical design decision. They

ensured that each Arduino could be referenced reliably by name—such as

/dev/arduino_pca—regardless of USB enumeration order. This was especially important for

scripts running on boot or in timed sequences, where incorrect device assignment could cause

unpredictable behaviour. Combined with a startup handshake protocol, these symlinks helped

establish a more deterministic and repeatable system state at runtime.

Finally, the lightweight, decoupled nature of the software stack aligned with the project’s

overall goals: to demonstrate EEG-based control of a wearable exoskeleton using accessible,

open tools. While not optimised for scalability or embedded efficiency, the final design was

stable, understandable, and maintainable meeting its core requirements for real-world testing

and demonstration.

Node-RED

When setting up the Node-RED flows for EEG-based control, a couple of node palettes had

to be installed to enable functionality. Among these, the Emotiv-BCI nodes were critical for

interfacing with the Emotiv headset, while the dashboard 1.0 palette allowed for real-time

monitoring and visualisation of system states and command outputs. These tools were

fundamental to creating a control and monitoring interface; allowing observing of the

system’s users’ control signals without needing to rely on watching Emotiv Suite directly all

the time.

The flow design underwent numerous iterations throughout the development cycle. Initially,

the objective was simply to establish communication with the headset and begin receiving

data within the Node-RED environment. This early stage was exploratory, helping us

understand the structure and characteristics of the data being streamed from Emotiv’s Cortex

API, and what processing would be necessary before transmitting control signals to the

exoskeleton over MQTT.

One of the first improvements was the inclusion of function nodes to filter and format

incoming data. Emotiv's API, in its free tier, limits user access to only trained mental

commands - delivered as intensity values on a 0 to 100 scale. These commands had to be

thresholded to prevent false positives and misfires. A script was implemented to parse

incoming payloads and apply conditional logic: if the intensity exceeded a predefined

Page 71

threshold, a corresponding command such as "lift" was passed forward; otherwise, a "none"

command was issued.

This filtering was essential not only for accuracy but also to mitigate a soon to be known

Node-RED quirk: even if a script doesn’t explicitly return an output, unhandled data can still

propagate through the flow. Without returning "none", stray messages - in the form of zeroes

- were transmitted, leading to possible confusion for an unexpected input and no way to

handle it cleanly. Including the explicit “none” command ensured consistent, intentional

communication over MQTT as we had a known message to ignore.

After processing, the cleaned command data was transmitted over MQTT, where the Jetson

Nano subscribed to the appropriate topics and used these commands to actuate servos in the

exoskeleton.

Working with Emotiv’s Cortex API introduced several technical challenges. A particularly

persistent issue was that the Emotiv suite software had to be launched before starting Node-

RED - failing to do so would cause WebSocket connection errors, with the API being marked

as "busy" or not attempting to connect at all. Additionally, a later update to Emotiv’s license

agreement broke compatibility with containerised environments, meaning that our Node-RED

instance, which had previously been deployed via Docker, now failed to connect. The

workaround was to run Node-RED natively on the host machine, rather than within a

container, while continuing to run Mosquitto in Docker.

Once the connectivity issues were resolved, final improvements could be made to the Node-

RED dashboard. These included enhancements to usability and user feedback, such as

displaying the last sent command and its intensity in textual form and switching from static

gauges to real-time graphs. This provided a more informative overview of cognitive activity,

allowing the user or an observer to see fluctuations in thought strength and control quality

without having to monitor the Emotiv software directly.

The dashboard was also designed with safety and user control in mind. A pair of buttons were

added to control a software-based emergency stop (E-Stop). These acted as toggles, emitting

Boolean values on press. The visual design featured a large red button to engage the E-Stop

and a green one to disengage it. Between these, a power indicator was placed, dynamically

changing from green (active) to red (stopped) to clearly show the system’s state at a glance—

eliminating the need for the user to remember which button was pressed last.

Page 72

Realisation of Evaluation of the Final Robotic

System
This section presents the final integrated prototype and assesses its meeting the project's

original objectives. Based on real-world testing, it reflects on system performance, reliability,

and usability, highlighting both the developed exoskeleton's successes and limitations.

Software Realisation

The software realisation focused on building a modular, lightweight, and fault-tolerant

control system that reliably translates EEG commands into physical movement. The

architecture was developed around a set of dedicated Python scripts that each handled

specific tasks, such as receiving mental command signals, controlling servo positions,

monitoring system current, and managing safety responses. These scripts communicated via

MQTT topics, allowing each subsystem to operate independently while remaining

synchronised through a shared messaging structure.

Key to the software’s success was the decision to avoid using a full ROS-based stack. ROS

introduced unnecessary complexity and compatibility issues during early testing, especially

when simulation efforts with Gazebo stalled. Instead, MQTT and Node-RED provided a

more accessible and stable alternative, allowing visual monitoring of signal flow and real-

time debugging during development.

Each Arduino was addressed through persistent symlinks based on serial numbers, avoiding

issues caused by dynamic USB enumeration. A handshake protocol was also added to ensure

that the PCA9685 Arduino was fully initialised before accepting servo commands, addressing

lag and missed messages during startup.

The final software structure prioritised clarity and reliability. Components could be swapped

or updated without affecting the overall system, supporting ongoing hardware changes and

simplifying maintenance. This approach enabled smooth testing sessions, quick recovery

from faults, and a clear demonstration of EEG-based actuation for rehabilitation use.

Software Development

The software development process was structured to support remote collaboration, rapid

iteration, and seamless deployment across heterogeneous hardware. Development took place

primarily on a Windows laptop, with remote access to the Jetson Nano—running the main

control software—established via SSH. This enabled the team to manage code, monitor

processes, and push updates without requiring direct interaction with the Jetson's desktop

interface, which remained headless throughout the project.

The team used Visual Studio Code in combination with the Remote - SSH extension, which

allowed the Jetson Nano’s file system to be accessed as if it were local. This setup provided

full IDE functionality—including syntax highlighting, Git integration, and terminal access—

while keeping execution and testing bound to the Jetson. It was especially helpful when

debugging live systems, as logs could be streamed in real time while viewing or editing the

code directly responsible.

Page 73

Python was chosen as the primary development language for its simplicity, wide hardware

support, and the availability of essential libraries such as paho-mqtt, pyserial, and json. Each

component of the system—servo control, EEG command handling, safety logic, and current

sensing—was developed as a standalone script. This modular approach allowed subsystems

to be launched, stopped, and debugged independently, reducing interdependency and making

it easier to isolate faults during testing.

To manage communication between these components, the team implemented MQTT using

the Mosquitto broker. The broker was hosted inside a Docker container on the Windows

laptop, ensuring environment consistency and allowing the system to be brought up or

restarted reliably. Other containerised services included the EEG interface (via Node-RED)

and logging dashboards. This decision was made to avoid the complexity of cross-platform

dependency issues, as containerising the services enabled reproducible environments across

team machines.

Node-RED was used not just for EEG signal routing, but also as a high-level visual

debugging tool. It provided real-time status indicators and flow control, making it easier to

track whether data was reaching its intended destination. In practice, this meant commands

from the Emotiv system could be monitored in a clear, web-based UI before being passed to

the Python control scripts.

As development progressed, the team encountered recurring issues with Arduino device

enumeration—specifically, that each board (connected via USB) would randomly be assigned

paths such as /dev/ttyACM0, /dev/ttyACM1, etc. This inconsistency made automated scripts

prone to failure, as the mapping between logical role and device path could shift between

boots. To address this, we used udev rules to assign persistent symlinks to each Arduino

based on its unique serial number. These were given intuitive names like /dev/arduino_pca,

/dev/arduino_current, and /dev/arduino_limits, which were then referenced in the software.

This guaranteed reliable connections to the correct microcontroller, regardless of connection

order or timing.

In addition, a serial handshake protocol was implemented specifically for the Arduino

responsible for driving the PCA9685 servo controller. During initial tests, the Jetson script

would begin sending commands before the Arduino had finished initialising, causing delays

or missed instructions. To resolve this, the Arduino was programmed to send an "ACK"

message once it was ready, and the Jetson’s Python script would wait for this signal before

transmitting any commands. This simple but effective protocol ensured synchronisation

between startup routines and improved overall system responsiveness.

Version control was managed using Git, with local repositories kept on both the Jetson and

the development laptop. Changes were synced via SSH, allowing branches to be tested safely

before merging. This helped track changes over time and provided a recovery mechanism in

the event of breaking updates.

Altogether, the software development strategy focused on minimising friction between

writing code and seeing it operate in real-world conditions. By leaning on remote tooling,

containerisation, and modular design, the team maintained development velocity even as the

hardware configuration and project scope evolved. This setup was instrumental in delivering

Page 74

a working prototype that could reliably interpret EEG signals and perform real-time actuation

under live test conditions.

Important Code Extracts

To ensure consistent serial communication with each Arduino, persistent device naming was

implemented using udev rules. This process begins by plugging in the Arduino via USB and

identifying its unique serial number using the command udevadm info -a -n /dev/<device> |

grep '{serial}' | head -n 1. Once the serial number is obtained, a custom rules file (99-arduino-

names.rules) is created in /etc/udev/rules.d/, where each Arduino is assigned a symbolic link

name (e.g. arduino_pca, arduino_ina, arduino_limits) based on its serial ID. These rules

ensure that, regardless of the order in which Arduinos are connected or rebooted, each one is

assigned a predictable path in /dev/. After saving the rules, they are reloaded and triggered

using udevadm, and verification is done by listing the resulting symlinks with ls -l

/dev/arduino_*. This setup eliminates ambiguity in device assignment and allows the main

control scripts to reliably communicate with the correct microcontroller every time the

system starts.

To automate system startup and ensure all critical scripts launch on boot, a custom desktop

autostart entry and a Bash script were used. A .desktop file was created in

/home/<USER>/.config/autostart, which references a script (startup.sh) that sequentially

opens terminal windows and executes each required Python module. This includes the scripts

for controlling the PCA9685 (mqtt_PCA9685.py), current sensing (mqtt_INA226.py), limit

switch monitoring (limits_serial_mqtt.py), the main logic controller (main.py), and the

software emergency stop handler (soft_estop.py). Each command is launched in a new

GNOME terminal instance with a small delay between them to avoid resource contention

during initialisation. This method provides a simple, reliable way to automatically bring the

entire exoskeleton control system online each time the Jetson Nano starts, supporting

consistent operation without requiring manual intervention.

startup.sh

#!/bin/bash

Navigate to the directory where your Python scripts are

cd /home/jetson/exoskeleton

Launch each script in a new terminal window in order

gnome-terminal -- bash -c "python3 mqtt_PCA9685.py; exec bash"

sleep 1

gnome-terminal -- bash -c "python3 mqtt_INA226.py; exec bash"

sleep 1

gnome-terminal -- bash -c "python3 limits_serial_mqtt.py; exec bash"

sleep 1

gnome-terminal -- bash -c "python3 main.py; exec bash"

sleep 1

gnome-terminal -- bash -c "python3 soft_estop.py; exec bash"

Page 75

[Desktop Entry]

Type=Application

Exec=/home/jetson/exoskeleton/startup.sh

Hidden=false

NoDisplay=false

X-GNOME-Autostart-enabled=true

Name=Start Exoskeleton

Comment=Starts all Python scripts at login, this file needs to be saved in

/home/<USER>/.config/autostart

INA226 Current Sensing

This Arduino sketch interfaces with two INA226 current sensors over I²C to monitor the

voltage and current drawn by the system’s servo power rails. Each sensor is calibrated for a

0.1 Ω shunt resistor with a maximum expected current of 4.5 A, ensuring accurate readings

without automatic range normalisation. In the main loop, the Arduino reads both voltage and

current values from each INA226 module and outputs them over serial in structured JSON

format. This data is read by the Jetson Nano via a Python script, then published over MQTT

for real-time monitoring, overcurrent detection, and logging. The update rate is set to once

per second, balancing responsiveness with communication overhead.

#include <Wire.h>

#include <INA226.h>

INA226 ina1(0x40);

INA226 ina2(0x41);

void setup() {

 Serial.begin(115200);

 Wire.begin();

 ina1.begin();

 ina2.begin();

 // Calibrate both sensors for 0.1Ω shunt and 4.5A max expected current

 // normalise = false ensures full range (no rounding)

 int err1 = ina1.setMaxCurrentShunt(4.5, 0.1, false);

 int err2 = ina2.setMaxCurrentShunt(4.5, 0.1, false);

 if (err1 != INA226_ERR_NONE) {

 Serial.print("INA1 Calibration Error: 0x");

 Serial.println(err1, HEX);

 }

 if (err2 != INA226_ERR_NONE) {

 Serial.print("INA2 Calibration Error: 0x");

Page 76

 Serial.println(err2, HEX);

 }

}

void loop() {

 float v1 = ina1.getBusVoltage(); // V

 float i1 = ina1.getCurrent(); // A

 float v2 = ina2.getBusVoltage(); // V

 float i2 = ina2.getCurrent(); // A

 Serial.print("{\"ina1\": {\"voltage\": ");

 Serial.print(v1, 3);

 Serial.print(", \"current\": ");

 Serial.print(i1, 3);

 Serial.print("}, \"ina2\": {\"voltage\": ");

 Serial.print(v2, 3);

 Serial.print(", \"current\": ");

 Serial.print(i2, 3);

 Serial.println("}}");

 delay(1000);

}

Limit Switch Monitoring

This sketch reads the state of four limit switches wired to digital pins 8–11 and sends their

stable states over serial in JSON format every 50ms. Internal pull-up resistors are used, so

each switch is active LOW when pressed. A simple software debounce mechanism filters out

signal noise by requiring a 30ms stable reading before considering the switch state changed.

The output JSON includes boolean values for LS1 through LS4, allowing the Jetson Nano to

monitor joint boundaries and respond appropriately—such as stopping or reversing servo

motion if a physical limit is reached. This approach ensures safety through continuous, low-

latency monitoring.

const int switchPins[4] = {8, 9, 10, 11};

bool currentStates[4] = {false, false, false, false};

bool stableStates[4] = {false, false, false, false};

unsigned long lastReadTime[4] = {0, 0, 0, 0};

const int debounceDelay = 30; // Minimum stable time in ms

void setup() {

 Serial.begin(115200);

 for (int i = 0; i < 4; i++) {

 pinMode(switchPins[i], INPUT_PULLUP); // Using internal pull-up resistors

 }

}

Page 77

void loop() {

 unsigned long now = millis();

 for (int i = 0; i < 4; i++) {

 bool reading = digitalRead(switchPins[i]) == LOW; // true if pressed

 if (reading != currentStates[i]) {

 // State changed – start debounce timer

 lastReadTime[i] = now;

 currentStates[i] = reading;

 }

 if ((now - lastReadTime[i]) > debounceDelay) {

 // State stable – update

 stableStates[i] = currentStates[i];

 }

 }

 // Send JSON output every 50ms

 static unsigned long lastSend = 0;

 if (now - lastSend > 50) {

 Serial.print("{");

 Serial.print("\"LS1\":"); Serial.print(stableStates[0] ? "true" :

"false"); Serial.print(",");

 Serial.print("\"LS2\":"); Serial.print(stableStates[1] ? "true" :

"false"); Serial.print(",");

 Serial.print("\"LS3\":"); Serial.print(stableStates[2] ? "true" :

"false"); Serial.print(",");

 Serial.print("\"LS4\":"); Serial.print(stableStates[3] ? "true" :

"false");

 Serial.println("}");

 lastSend = now;

 }

}

PCA9685 Servo Control

This sketch controls up to 16 servo channels using the PCA9685 PWM driver,

communicating over I²C. The Arduino receives servo angle commands in JSON format via

serial input (e.g., { "Servo0": 90 }), parses them using the ArduinoJson library, and maps the

angles (0–180°) to corresponding PWM pulse widths (500–2500 µs). The servo pulses are

then written to the appropriate channel on the PCA9685, enabling real-time control of

multiple joints. The sketch includes feedback via the serial monitor to confirm each

command, and serves as the core actuation interface in the exoskeleton’s modular control

system.

Page 78

#include <Wire.h>

#include <Adafruit_PWMServoDriver.h>

#include <ArduinoJson.h>

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(0x40);

// Servo pulse range

const int SERVO_MIN = 102; // ~500us

const int SERVO_MAX = 512; // ~2500us

void setup() {

 Serial.begin(115200);

 Wire.begin();

 pwm.begin();

 pwm.setPWMFreq(50); // Standard servo frequency

 delay(10);

}

void loop() {

 static String input;

 while (Serial.available()) {

 char c = Serial.read();

 if (c == '\n') {

 processJson(input);

 input = "";

 } else {

 input += c;

 }

 }

}

void processJson(const String& jsonStr) {

 StaticJsonDocument<128> doc;

 DeserializationError err = deserializeJson(doc, jsonStr);

 if (err) {

 Serial.print("JSON parse error: ");

 Serial.println(err.c_str());

 return;

 }

 for (JsonPair kv : doc.as<JsonObject>()) {

 String key = kv.key().c_str();

 int value = kv.value().as<int>();

 if (key.startsWith("Servo")) {

 int channel = key.substring(5).toInt(); // "Servo1" → 1

 value = constrain(value, 0, 180);

 int pulse = map(value, 0, 180, SERVO_MIN, SERVO_MAX);

Page 79

 pwm.setPWM(channel, 0, pulse);

 Serial.print("Set ");

 Serial.print(key);

 Serial.print(" to ");

 Serial.print(value);

 Serial.println(" degrees");

 }

 }

}

Python E-stop Relay Script

This Python script runs on the Jetson Nano and manages a physical emergency stop relay

connected via GPIO. It listens for MQTT messages on the topic jetson/estop/relay, expecting

a JSON payload with an estop boolean value. When estop is true, the script immediately

disables the relay by setting the GPIO pin HIGH, cutting power to the system. When estop is

false, a 3-second confirmation timer begins—ensuring transient errors or noise do not cause

unintended system reactivation. After 3 seconds without interruption, the relay is re-enabled

(GPIO LOW). The script also publishes a status heartbeat to the jetson/status/run topic on

successful connection. This mechanism adds an essential safety layer, ensuring that

emergency stop conditions are honoured with both hardware enforcement and time-based

stability.

import Jetson.GPIO as GPIO

import time

import json

import paho.mqtt.client as mqtt

import threading

=== GPIO Setup ===

GPIO.setmode(GPIO.BOARD)

RELAY_PIN = 11 # GPIO17 (with internal pull-up on Jetson)

GPIO.setup(RELAY_PIN, GPIO.OUT)

GPIO.output(RELAY_PIN, GPIO.HIGH) # Start with relay OFF (active LOW)

=== MQTT Setup ===

BROKER = "10.125.124.177"

PORT = 1883

TOPIC = "jetson/estop/relay"

STATUS_TOPIC = "jetson/status/run"

=== Relay Logic ===

class RelayController:

 def __init__(self):

 self.confirmed_estop = True # Start in estop state

 self.timer = None

 self.lock = threading.Lock()

 GPIO.output(RELAY_PIN, GPIO.HIGH) # Ensure relay is OFF initially

Page 80

 def update_estop(self, new_estop):

 with self.lock:

 if new_estop:

 if self.timer:

 self.timer.cancel()

 self.timer = None

 if self.confirmed_estop is not True:

 self.confirmed_estop = True

 self._apply_relay_state(True)

 else:

 if self.timer:

 self.timer.cancel()

 self.timer = threading.Timer(3.0, self._confirm_estop_clear)

 self.timer.start()

 def _confirm_estop_clear(self):

 with self.lock:

 if self.confirmed_estop != False:

 self.confirmed_estop = False

 self._apply_relay_state(False)

 def _apply_relay_state(self, estop):

 if estop:

 print("E-Stop engaged → Relay OFF")

 GPIO.output(RELAY_PIN, GPIO.HIGH)

 else:

 print("E-Stop cleared → Relay ON")

 GPIO.output(RELAY_PIN, GPIO.LOW)

 def cleanup(self):

 if self.timer:

 self.timer.cancel()

 GPIO.output(RELAY_PIN, GPIO.HIGH)

 GPIO.cleanup()

relay_controller = RelayController()

=== MQTT Callbacks ===

def on_connect(client, userdata, flags, rc):

 print("Connected to MQTT broker")

 client.subscribe(TOPIC)

 # Publish run status

 client.publish(STATUS_TOPIC, json.dumps({"run": True}))

def on_message(client, userdata, msg):

 try:

 payload = json.loads(msg.payload.decode())

Page 81

 estop = payload.get("estop")

 if isinstance(estop, bool):

 relay_controller.update_estop(estop)

 else:

 print("Invalid payload:", payload)

 except Exception as e:

 print("Error parsing message:", e)

=== Main ===

client = mqtt.Client()

client.on_connect = on_connect

client.on_message = on_message

try:

 client.connect(BROKER, PORT, 60)

 client.loop_forever()

except KeyboardInterrupt:

 print("\nShutting down...")

finally:

 relay_controller.cleanup()

Python Servo Control Script

This Python script bridges MQTT-based control messages to the Arduino responsible for

servo actuation via the PCA9685 driver. It listens to the topic jetson/command/servo,

expecting JSON payloads with keys like "servo1" and "servo2", which are internally

remapped to PCA9685 channels ("Servo0", "Servo1"). Upon receiving a command, the script

serialises the data into JSON and transmits it over /dev/arduino_pca using a dedicated lock to

ensure thread-safe communication. It waits for an "OK" response from the Arduino before

proceeding, providing a basic form of handshake confirmation. This script ensures real-time,

reliable motor control in response to user intent, whether triggered by EEG commands or

other high-level logic within the system.

import json

import time

import serial

import threading

import paho.mqtt.client as mqtt

=== MQTT Config ===

MQTT_BROKER = "10.125.124.177"

MQTT_PORT = 1883

MQTT_TOPIC = "jetson/command/servo"

=== Serial Config ===

SERIAL_PORT = "/dev/arduino_pca"

BAUDRATE = 115200

ser = serial.Serial(SERIAL_PORT, BAUDRATE, timeout=1)

Page 82

time.sleep(2) # Wait for Arduino reset

=== Lock for serial access ===

lock = threading.Lock()

def send_to_arduino(payload):

 try:

 with lock:

 ser.write((json.dumps(payload) + "\n").encode("utf-8"))

 while True:

 line = ser.readline().decode("utf-8").strip()

 if line == "OK":

 break

 except Exception as e:

 print("Serial error:", e)

=== MQTT Callbacks ===

def on_connect(client, userdata, flags, rc):

 print("Connected to MQTT broker with result code", rc)

 client.subscribe(MQTT_TOPIC)

def on_message(client, userdata, msg):

 try:

 payload = json.loads(msg.payload.decode("utf-8"))

 mapped = {}

 for k, v in payload.items():

 if k == "servo1":

 mapped["Servo0"] = v

 elif k == "servo2":

 mapped["Servo1"] = v

 if mapped:

 send_to_arduino(mapped)

 print(f"Sent to Arduino: {mapped}")

 except Exception as e:

 print("Failed to handle message:", e)

=== Start MQTT client ===

client = mqtt.Client()

client.on_connect = on_connect

client.on_message = on_message

client.connect(MQTT_BROKER, MQTT_PORT, 60)

try:

 client.loop_forever()

except KeyboardInterrupt:

 print("Exiting...")

 ser.close()

Page 83

Python INA226 Current Monitoring Script

This script reads real-time voltage and current data from an Arduino connected to two

INA226 sensors via I²C. The Arduino sends JSON-formatted data over serial to the Jetson

Nano, where this script parses the output and publishes it to MQTT topics

jetson/monitor/power/ina1 and jetson/monitor/power/ina2. Each loop cycle reads a single line

of serial input, decodes the JSON payload, and forwards the respective INA1 and INA2

readings to the MQTT broker at 10.125.124.177. Error handling is included for serial

communication issues and malformed JSON, ensuring stable long-term operation. This setup

provides essential power telemetry for live monitoring, debugging, and safety validation of

the exoskeleton’s electrical system.

import serial

import json

import time

import paho.mqtt.client as mqtt

Config

SERIAL_PORT = "/dev/arduino_ina"

BAUD_RATE = 115200

MQTT_BROKER = "10.125.124.177"

MQTT_PORT = 1883

TOPIC_INA1 = "jetson/monitor/power/ina1"

TOPIC_INA2 = "jetson/monitor/power/ina2"

Setup MQTT

client = mqtt.Client()

client.connect(MQTT_BROKER, MQTT_PORT, 60)

Setup serial

ser = serial.Serial(SERIAL_PORT, BAUD_RATE, timeout=1)

time.sleep(2)

print("📡 Monitoring INA sensors...")

while True:

 try:

 line = ser.readline().decode("utf-8", errors="ignore").strip()

 if not line:

 continue

 data = json.loads(line)

 if "ina1" in data:

 client.publish(TOPIC_INA1, json.dumps(data["ina1"]))

 if "ina2" in data:

 client.publish(TOPIC_INA2, json.dumps(data["ina2"]))

 except json.JSONDecodeError as e:

Page 84

 print(f" JSON decode error: {e} | line: {line}")

 except Exception as e:

 print(f" General error: {e}")

 time.sleep(1)

Python Limit Switch Monitoring Script

This script reads the state of four limit switches from an Arduino (connected via

/dev/arduino_limits) and publishes their status to MQTT for real-time system monitoring.

The Arduino continuously outputs JSON-encoded boolean values for each switch (LS1 to

LS4), which this script parses and republishes to the topic jetson/limits/ls. The script ensures

that the latest switch states are made available to other system components, allowing

immediate responses—such as halting or reversing motion when physical limits are reached.

Robust error handling is implemented to tolerate malformed serial input and maintain

continuous operation even under unstable conditions.

import serial

import json

import paho.mqtt.client as mqtt

=== Configuration ===

SERIAL_PORT = "/dev/arduino_limits"

BAUDRATE = 115200

MQTT_BROKER = "10.125.124.177"

MQTT_PORT = 1883

MQTT_TOPIC = "jetson/limits/ls"

=== MQTT Setup ===

client = mqtt.Client()

client.connect(MQTT_BROKER, MQTT_PORT, 60)

client.loop_start()

=== Serial Setup ===

ser = serial.Serial(SERIAL_PORT, BAUDRATE, timeout=1)

=== Track Previous State ===

last_state = {

 "LS1": None,

 "LS2": None,

 "LS3": None,

 "LS4": None

}

print("Listening on serial and publishing changes to MQTT...")

while True:

 try:

 line = ser.readline().decode("utf-8").strip()

Page 85

 if not line:

 continue

 data = json.loads(line)

 changed = {}

 for key in ["LS1", "LS2", "LS3", "LS4"]:

 if key in data:

 if data[key] != last_state[key]:

 changed[key] = data[key]

 last_state[key] = data[key]

 if changed:

 client.publish(MQTT_TOPIC, json.dumps(last_state))

 print(f"Published to {MQTT_TOPIC}: {last_state}")

 except json.JSONDecodeError as e:

 print(f"JSON decode error: {e}")

 except Exception as e:

 print(f"Error: {e}")

Python EEG Command Handler Script

This script acts as the core logic layer for interpreting EEG-based control signals and

enforcing physical safety constraints. It listens to two MQTT topics:

jetson/eeg/command/servo for high-level EEG actions (e.g., "lift", "push", "left", "right") and

jetson/limits/ls for limit switch states (LS1–LS4). When an EEG command is received, the

script calculates the desired change in servo angle—while actively checking if movement is

blocked due to a triggered limit switch. If a limit is hit, the servo is momentarily reversed to

relieve pressure and movement is blocked until the switch is cleared. Servo positions are

clamped within predefined ranges (servo1: 0–60°, servo2: 80–180°), and updated angles are

published to jetson/command/servo for real-time actuation. The use of threading ensures that

each MQTT message is handled promptly without blocking the main loop, and debug logs

help verify timing and decision logic during testing.

import json

import time

import threading

import paho.mqtt.client as mqtt

=== MQTT CONFIG ===

BROKER = "10.125.124.177"

PORT = 1883

COMMAND_TOPIC = "jetson/eeg/command/servo"

LIMIT_TOPIC = "jetson/limits/ls"

OUTPUT_TOPIC = "jetson/command/servo"

=== Debug Mode ===

debug = True

Page 86

=== Servo Limits ===

servo_limits = {

 "servo1": {"min": 0, "max": 60}, # Elbow

 "servo2": {"min": 80, "max": 180} # Wrist

}

=== Initial Servo States ===

servo_angles = {

 "servo1": 30, # Midpoint of 0–60

 "servo2": 145 # Midpoint of 180–80

}

movement_blocked = {

 "servo1": False,

 "servo2": False

}

=== Constants ===

STEP = 2.5

REVERSE_STEP = 2.5

client = mqtt.Client()

=== Limit Switch Handling ===

def on_limit_message(client, userdata, msg):

 start = time.perf_counter()

 try:

 payload = json.loads(msg.payload.decode("utf-8"))

 # --- Servo1 (Elbow): LS1 = max limit, LS2 = min limit ---

 ls1_triggered = payload.get("LS1", False)

 ls2_triggered = payload.get("LS2", False)

 if ls1_triggered:

 if not movement_blocked["servo1"]:

 movement_blocked["servo1"] = True

 # LS1 = max → reverse down

 servo_angles["servo1"] -= REVERSE_STEP

 servo_angles["servo1"] = max(servo_limits["servo1"]["min"],

servo_angles["servo1"])

 client.publish(OUTPUT_TOPIC, json.dumps({"servo1":

servo_angles["servo1"]}))

 if debug:

 print(f"LS1 hit! Reversing servo1 down to

{servo_angles['servo1']}")

 elif ls2_triggered:

 if not movement_blocked["servo1"]:

 movement_blocked["servo1"] = True

Page 87

 # LS2 = min → reverse up

 servo_angles["servo1"] += 5

 servo_angles["servo1"] = min(servo_limits["servo1"]["max"],

servo_angles["servo1"])

 client.publish(OUTPUT_TOPIC, json.dumps({"servo1":

servo_angles["servo1"]}))

 if debug:

 print(f"LS2 hit! Reversing servo1 up to

{servo_angles['servo1']}")

 else:

 movement_blocked["servo1"] = False

 # --- Servo2 (Wrist): LS3 = max limit, LS4 = min limit ---

 ls3_triggered = payload.get("LS3", False)

 ls4_triggered = payload.get("LS4", False)

 if ls3_triggered:

 if not movement_blocked["servo2"]:

 movement_blocked["servo2"] = True

 # LS3 = max → reverse down

 servo_angles["servo2"] -= REVERSE_STEP

 servo_angles["servo2"] = max(servo_limits["servo2"]["min"],

servo_angles["servo2"])

 client.publish(OUTPUT_TOPIC, json.dumps({"servo2":

servo_angles["servo2"]}))

 if debug:

 print(f"LS3 hit! Reversing servo2 down to

{servo_angles['servo2']}")

 elif ls4_triggered:

 if not movement_blocked["servo2"]:

 movement_blocked["servo2"] = True

 # LS4 = min → reverse up

 servo_angles["servo2"] += 5

 servo_angles["servo2"] = min(servo_limits["servo2"]["max"],

servo_angles["servo2"])

 client.publish(OUTPUT_TOPIC, json.dumps({"servo2":

servo_angles["servo2"]}))

 if debug:

 print(f"LS4 hit! Reversing servo2 up to

{servo_angles['servo2']}")

 else:

 movement_blocked["servo2"] = False

 except Exception as e:

 print("Error handling limit switch message:", e)

 end = time.perf_counter()

 if debug:

 print(f"Limit handler time: {end - start:.4f}s")

Page 88

=== Command Handling ===

def on_command_message(client, userdata, msg):

 start = time.perf_counter()

 try:

 payload = json.loads(msg.payload.decode("utf-8"))

 action = payload.get("action")

 if action == "push":

 servo = "servo1"

 delta = STEP

 elif action == "lift":

 servo = "servo1"

 delta = -STEP

 elif action == "right":

 servo = "servo2"

 delta = STEP

 elif action == "left":

 servo = "servo2"

 delta = -STEP

 else:

 return

 if movement_blocked[servo]:

 if debug:

 print(f"Movement blocked for {servo}, ignoring {action}")

 return

 # Update and clamp angle based on servo limits

 servo_angles[servo] += delta

 min_angle = servo_limits[servo]["min"]

 max_angle = servo_limits[servo]["max"]

 servo_angles[servo] = max(min_angle, min(max_angle,

servo_angles[servo]))

 client.publish(OUTPUT_TOPIC, json.dumps({servo: servo_angles[servo]}))

 if debug:

 print(f"Action '{action}' → {servo} = {servo_angles[servo]}")

 except Exception as e:

 print("Error handling servo command:", e)

 end = time.perf_counter()

 if debug:

 print(f"Command handler time: {end - start:.4f}s")

=== Threaded Wrapper ===

def threaded_callback(callback):

 def wrapper(client, userdata, msg):

Page 89

 threading.Thread(target=callback, args=(client, userdata,

msg)).start()

 return wrapper

=== Setup MQTT ===

client.on_connect = lambda c, u, f, rc: (

 print("Connected with result code", rc),

 c.subscribe(COMMAND_TOPIC, qos=0),

 c.subscribe(LIMIT_TOPIC, qos=0)

)

client.message_callback_add(COMMAND_TOPIC,

threaded_callback(on_command_message))

client.message_callback_add(LIMIT_TOPIC, threaded_callback(on_limit_message))

client.connect(BROKER, PORT, 60)

client.loop_start()

=== Keep Main Thread Alive ===

try:

 while True:

 time.sleep(0.1)

except KeyboardInterrupt:

 print("Exiting...")

 client.loop_stop()

 client.disconnect()

Page 90

Safe Operation

Assumptions for Safe Operation

The system can be safely operated under the following conditions:

1. User Setup:

a. The user should be seated comfortably in a chair to ensure proper posture during

operation.

b. The user must wear the Emotiv EpochX 14-channel headset correctly, ensuring

proper electrode contact for accurate data reading. Test E-T08.

c. A nurse or trained operator should be present during the training sessions to assist

the user and ensure safety.

2. Training Sessions:

a. The system is designed for 15-minute training sessions followed by 30-minute

breaks. Over time, training durations will adjust based on the user's fatigue level.

b. Users must refrain from eating, drinking, or smoking during training. If the user

feels fatigued, they should take a break and, if possible, resume the training once

they feel comfortable. Test E-T09.

c. The system will automatically stop if the user exceeds the safe operational range

for the servos or other components, and a nurse or trained operator will have the

physical Emergency Stop button if the user is unable to hold.

3. Environmental Factors:

a. The system should be operated in a well-ventilated environment to prevent

overheating of components, especially the servos and electronics.

b. It must be ensured that the emergency stop (both software and physical) is clearly

accessible and functional in the event of any failure or malfunction.

c. Remove as many electronics from the vicinity to reduce noise and interference

with the EEG headset.

4. Health and Safety Monitoring:

a. The user should not operate the system if feeling unwell or fatigued.

b. The user should not operate the system if they are alone and/or without a trained

professional.

c. There should be clear instructions and training on how to operate the system

safely, particularly for both the user and the nurse, which are included above and

will be present in a user manual.

Page 91

Safety Features

The system is equipped with several built-in safety features to ensure the safe operation of

both the user and the hardware:

1. Range Limitation and Limit Switches for Servos:

a. Servos used in the system are range-limited to prevent excessive motion that

could lead to injury or damage. If a servo attempts to exceed its range, limit

switches will activate, signalling the system to stop the movement and reverse by

2.5 degrees. This ensures the system doesn’t push beyond safe mechanical

boundaries.

2. Over-Current Protection:

a. Over-current protection is implemented on both the servos and the entire

system. The servos themselves are equipped with their own over-current

protection circuits to prevent overheating or damage from excessive current

draw. Additionally, current sensors are employed to measure and monitor the

overall system's current usage, further preventing any possible electrical failure or

fire hazard due to an overload.

3. Emergency Stop (E-Stop):

a. The system includes both a software-based emergency stop accessible via the

Node-RED dashboard and a physical emergency stop button. The software-

based emergency stop will immediately halt all servo operations if triggered,

while the physical button provides an additional layer of safety in case of an

emergency or malfunction and has the same function as the software e-stop.

4. Battery Safety:

a. The system runs on two batteries in parallel to ensure reliable power supply.

This configuration helps prevent sudden power loss and ensures that the system

will continue to operate safely if one battery is depleted or fails. The batteries last

for 2 hours of constant use, and the headset lasts an hour when fully charged. The

batteries are also designed with built-in safety mechanisms to prevent overheating

and overcharging.

5. Human-Machine Interaction (HMI) Safety:

a. The user will interact with the system via a laptop running training software,

with real-time data streaming from the Emotiv EpochX headset. The nurse will

be responsible for ensuring the user’s well-being and intervening if any issues

arise during the training session and mounting the arm to the user.

b. The nurse will be trained to recognize signs of user discomfort or fatigue and will

be responsible for ensuring that the user follows the recommended training

schedules, including taking appropriate breaks.

Page 92

6. Software Safety Monitoring:

a. The system software provides real-time feedback on both the hardware (servos,

battery status) and user data (via the EEG headset). If any safety limits are

exceeded (e.g., servo range, over-current, or system failure), the software will

trigger appropriate actions, including stopping movement.

Justification of Safety Features

The safety features integrated into the system are justified by the following reasons:

1. Servo Range Limitation and Over-Current Protection:

a. Ensuring the servos remain within a predefined range prevents mechanical

damage and minimizes the risk of injury to the user. The over-current protection

ensures that the system operates within safe electrical limits, preventing damage

from excess current and reducing the risk of electrical fires.

2. Emergency Stop Mechanisms:

a. Both the physical and software emergency stops are vital to prevent further system

operation in case of a fault, such as servo failure, overheating, or an unexpected

hardware malfunction. The availability of two stop mechanisms (software and

physical) adds redundancy to the safety system, ensuring the operator or user can

stop the system quickly in case of any hazard.

3. Battery Safety:

a. Using two parallel batteries ensures that the system remains operational even in

the event of battery failure. The additional battery safety mechanisms protect the

system from electrical hazards and ensure that it can be safely recharged without

risk of overcharging or overheating.

4. Human-Machine Interface (HMI) Safety:

a. Having a nurse trained in the safe operation of the system ensures that there is

someone who can monitor the user and intervene if necessary. The nurse’s role in

guiding the user through training sessions ensures that the user remains within the

system’s safe operating parameters.

5. System Monitoring and Feedback:

a. Real-time monitoring of the system’s performance, user data, and hardware status

helps ensure that any issues are immediately detected and addressed. By providing

alerts and feedback to the nurse, the system helps maintain a safe and controlled

training environment.

Overall, these safety features are designed to ensure the safety of both the user and the

system, promoting a controlled and safe training experience while minimizing the risk of

injury, equipment failure, or system malfunction. This structure addresses the necessary

assumptions and safety features, providing a clear and justified explanation for the measures

taken to ensure safe operation.

Page 93

User Manual
This manual provides step-by-step instructions for safely operating the robotic arm system

with the Emotiv EEG headset. It includes setup, operation, and troubleshooting guidance. A

nurse, carer or family member with the appropriate training to use the device and software.

1. Safe Operation

Assumptions for Safe Operation

• The system is designed to be operated only when the user is seated comfortably in a

chair, with a properly fitted Emotiv EpochX 14-channel headset.

• A trained nurse will be present during training to ensure the user is positioned

correctly and safe throughout the session.

• Training Sessions: The system operates with 15-minute training intervals followed

by 30-minute breaks. The user should avoid eating, drinking, or smoking during the

training. If the user feels fatigued, the nurse should guide them to take a break.

Safety Features

• Emergency Stop (E-Stop): Both software-based and physical emergency stop

buttons are available.

• Servo Range Limitation and Over-Current Protection: Prevents damage or injury

by limiting servo movement and monitoring electrical usage.

• Battery Safety: Dual parallel batteries with built-in safety mechanisms for preventing

overheating and overcharging.

Page 94

• Human-Machine Interface (HMI) Safety: Nurse supervision ensures safe operation

and intervention during the training.

• System Monitoring and Feedback: Real-time system monitoring with alerts for

abnormal conditions.

2. Setting Up the System

Step 1: Mounting the Robotic Arm

1. Adjusting Velcro Straps:

a. The nurse will help the user strap their arm into the robotic arm. The adjustable

Velcro straps are designed to rest on foam sections, ensuring the user’s arm is

comfortably supported.

b. The bicep section should be placed above the elbow, and the hand should be

placed through the arm's circular section. This setup ensures the arm is

positioned correctly for optimal movement and safety during training.

Page 95

Step 2: Preparing the Emotiv EpochX Headset

1. Positioning the Headset: Ensure that the headset is properly worn by the user. The

electrodes should have good contact with the skin to ensure accurate readings.

2. Start the Emotiv Software:

a. Launch the Emotiv software on the laptop.

b. Ensure the software indicates that the connections are "on" and that the headset is

ready.

Step 3:

Setting Up Node-RED

1. Start Node-RED:

a. On the laptop, open PowerShell and type node-red and press Enter.

b. This will start the Node-RED server, allowing communication between the

software and the robot.

Page 96

2. Launch Docker and Start MQTT Container:

a. After Node-RED is running, launch Docker on the system.

b. Find the MQTT container and click the "Run" button to initialize the MQTT

server.

3. Connect the Jetson Nano:

a. Plug in the Jetson Nano to the laptop. The auto-script will run automatically,

booting up necessary scripts (e.g., main, driver, MQTT).

b. Once the setup is complete, Node-RED will receive a "ready" response

confirming that the system is operational.

3. Starting the Training

1. Verification:

a. Confirm that the Emotiv software is displaying correct EEG data and that the

system is communicating properly with Node-RED.

2. Begin Training:

a. Once all systems are confirmed as ready, the nurse will start the training session.

The user will begin the 15-minute training session, during which the robotic arm

will assist in training based on EEG data.

b. The system will monitor for any potential safety risks (e.g., servo over-range or

excessive current draw) and stop operations if necessary.

Page 97

4. Troubleshooting & Debugging

If any issues arise during setup or operation, follow these steps to troubleshoot:

1. Emotiv Software Issues:

a. No Connection: Ensure the headset electrodes have proper contact with the

user's skin. Check the USB connection between the headset and the laptop.

b. Test Connection: Open the Emotiv software and check if the connections display

as "on". If not, reconnect the headset and verify that the software detects the

device.

2. Node-RED Issues:

a. Node-RED Not Starting: If Node-RED does not start, open PowerShell and type

node-red again. If there’s an error, check the script for issues or restart the laptop.

b. Communication Issues: If Node-RED doesn't receive a "ready" response, ensure

the Jetson Nano is properly connected to the laptop and powered.

3. Servo Issues:

a. If the servos are not responding, check for over-current conditions or any range

limits being exceeded. The system will automatically stop the servo if these limits

are triggered. If needed, press the emergency stop button.

4. General Hardware Issues:

a. Power Issues: If the system is not receiving power, ensure both batteries are

charged and connected properly. If one battery fails, the system should continue

operating using the second battery.

b. Emergency Stop Triggered: If the emergency stop is activated, the system will

halt all servo operations. Ensure that the user is safely seated and that the system

can be reset.

5. Safety Precautions

1. Fatigue:

a. If the user feels fatigued, they should immediately stop the training and take a

break. The system is designed to adjust training based on the user’s level of

fatigue.

2. Emergency Stop:

a. If at any point the user or the nurse feels that the system is malfunctioning, the

emergency stop button can be pressed to stop the system immediately.

3. Environmental Considerations:

a. Ensure the system is operating in a well-ventilated space to prevent overheating.

b. Keep electronics away from the EEG headset to avoid interference.

Page 98

Further Work

Unfinished Features

INA219 Current Sensor Chip

Description of Sub-Component

Midway through the development of the arm, it was decided that there would have to be

some sort of safety component to stop the servo motors from bending the arm too far. This

could be detected through the current being supplied to the motor as it would be much higher

if it is having to work against the strength of the arm.

This then prompted a search for devices and methods for detecting the current with an ability

to simply integrate it into a safety mechanism. The best solution for this problem was the

INA219 I2C chip that can read a range of different values including the current and feed them

back to an I2C compatible device using serial. This is perfect when paired with an Arduino to

make a closed circuit that would shut off a relay when the current is too high.

The relay is a 5V model with a coil and switch. The supply is then connected to a usually off

or usually on side to decide how the relay should be operated. As this is a safety feature, the

relay should default to off which means the circuit was designed in this way.

As well as this, 2 INA219 chips will be required for each of the servos so that each is being

monitored individually. With each of these in place it would be impossible for a situation to

arise where one servo is drawing too much current, but the relay isn’t switched because a

joined current monitor doesn’t sense above the threshold.

Functional Requirements

The functional requirements that this sub-component of the system are as follows:

• The Component must be able to monitor the current of each servo live to a high

degree of accuracy.

• It must be able to shut off all of the power to the servos is a certain threshold is

reached on one or both of the servos.

• It must send the current as well as any other readings from the chip as a serial JSON

output.

• It must all be self-contained and not dependent on any other aspect of the entire

system.

• It must have a powered off fail state.

• Must be in a small container that doesn’t encroach on the original design of the arm.

• It needs to be easily connectable in series as an “in-between” component of the

circuit.

Page 99

• Each component of the circuit should be individually testable and removable from the

main dataflow.

Development of Component

Development started on this by using the INA219 chip and an Arduino to see if the I2C

connection was operational. Once this was accomplished and it was giving an accurate

reading, the if-statement was written into the code to check for an appropriate current to limit

the circuit. This was tested at a lower threshold to show that the code worked as it was only

turning the onboard LED to show whether the value was over it. This was set at 700 for the

fan motor tests on the Arduino as the current regularly fluctuated above and below this value.

After this, a piece of code was written to test that the relay functioned as intended and won’t

turn anything on that is meant to be off. It was critical that this was tested as this was

intended as a safety feature and wouldn’t be validated as such with faulty components.

To add the second INA219 chip to the circuit, the address had to be connected by a solder

bridge to differentiate the second chip from the existing one. The code was then altered to

contain arrays, and the Json was also updated to reference the chips by their unique address

(0x40 & 0x44).

During testing with two relays and two INA219 chips, the I2C connection stopped working

after the relays were turned off. This could have been due to a surge in current as the relay

has an electromagnetic field which could have caused this. This can be resolved by using

diodes to prevent the current from surging where it shouldn’t as well as testing the component

using an externally powered system to put through the current sensor.

Programming Approach

Due to the nature of this component and how it integrates with the project, it was decided to

write functions that achieved each task so that each one could be turned on or off for each

test. This also means that if the team didn’t want the relays to trigger for a particular test, it is

possible to only log this to the console and move on from that particular function.

Page 100

Figure 35 - INA Data Flow

The flowchart above shows a high-level overview of the Arduino code. It operates in a loop

that is only terminated by resetting or unplugging the Arduino. This is as the program on this

Arduino is treated as an essential safety feature and if there is power to the system, it should

be operational. The arrow going down from the decision in the flowchart represents the True

outcome which would result in the relays being turned off indefinitely until the Arduino is

reset. The other outcome is the “False” outcome where the Json is sent over serial to the

central controller. This happens during either outcome and is achieved by taking the inputs

from the current sensor as variables and combining them all in a Json string. This is

standardised with the rest of the Arduinos using serial communication to ensure that the

jetson that is running the central control program doesn’t have to make sense of multiple

different Json formats.

Discontinuation of Sub-Component

While the component itself was built and tested, in the end this wasn’t added to the final

prototype due to adequate safety measures being in place for the testing of the system.

However, if this was to be launched to the public, it would be a useful step towards not

requiring supervision for the system to operate safely. There were INA266 chips integrated

into the system due to their higher current capabilities and ability to detect voltage. These

were instead used to log the status of various components throughout the system.

Page 101

The component was tested separately using a fan motor being ran through an independent

power source that passed through the relays connected to the Arduino. During this testing, the

system was able to automatically detect spikes in the current due to resistance that was being

exerted on the motor proving that the safety system could be added to the project as a whole

at any point in time without interfering with the components that are already in place.

Simulation Using ROS2 & Gazebo

Initially, there was an intention to simulate the physical system using Gazebo to allow for

training of the Emotiv commands. This would have consisted of python scripts which would

have received commands from the EEG headset and used these to manipulate a simulated

system.

The main components of the Gazebo Simulation would have been:

• Robot Description

o Describes the Links, joints, sensors & physical properties.

o URDF or SDF models would have been used to describe the physical collisions of the

system as well as the visuals in the simulation.

• ROS2 Nodes

o These have the ability to control the manipulation of robot arms that are similar to the

system developed in this project.

o Can publish or subscribe to sensor data

o Are also able to provide high level logic such as planners or behaviour trees

• World Files

o While these wouldn’t have been useful to this project in particular. There is the ability

to create a world file that a robot can either traverse or interact with using sensors and

other methods of obstacle detection.

• ROS to Gazebo Communication Bridge

o This ensures that Gazebo publishes topics that ROS2 nodes can subscribe to as well as

ROS2 communicating back

• Launch files

o These are written in python for ROS2.

o Are often used to launch gazebo as well as any robot description files and controllers

that are paired with it.

o This is the part of the simulation that failed to work as the machines in the lab had

recently been updated to ROS2 and the package which launched Gazebo wasn’t

installed correctly causing it to crash on start-up.

Before the development of this simulation was discontinued, the description of the robot was

using primitive shapes and joints to show a rough outline of what the system would look like.

Page 102

Before the controllers were written, it was essential that the launch files were able to launch

gazebo with the robot present in the simulation. Once it was obvious that this wasn’t going to

work, this aspect of the project was discontinued.

In retrospect, this element of development could have benefited the team. It would have

allowed the team working on the EEG headset to send their commands to a tangible system

that reacted to what was being sent. It would have also helped to understand how the physical

system should react to the commands that were being sent. If the reaction of the simulated

system to a command is too subtle or too dramatic, this could have been tweaked without the

risk of harm or damage to the equipment that comes with the physical testing of the system. It

also could have shown potential issues that could become apparent once the system is built

before it is close to completion allowing extra time to resolve these issues.

System Improvements

While the prototype successfully demonstrated EEG-controlled actuation for rehabilitation,

several improvements could enhance reliability, usability, and scalability in future iterations.

Transitioning from USB-connected Arduinos to a custom PCB or integrated microcontroller

board would reduce wiring complexity and improve robustness. Incorporating onboard data

logging and feedback (e.g. encoder feedback from servos) would allow finer motion control

and better fault detection. Software-wise, migrating to a unified interface—either through a

more robust ROS2 implementation or a custom web-based UI—could streamline monitoring

and user interaction. Finally, upgrading the mechanical design to include stronger, lighter

materials and more precise joints would further align the system with real-world

rehabilitation needs, paving the way for clinical testing and refinement.

Page 103

References
Emotiv. (n.d.) Pro license updates: New features and licensing options. Available at:

https://www.emotiv.com/blogs/press/pro-license-updates-new-features-and-licensing-options

(Accessed: 1/05/2025).

Nuwer, M. R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guérit, J., Hinrichs, H.,

Ikeda, A., Jose C. Luccas, F. & Rappelsburger, P. (1998) IFCN standards for digital recording

of clinical EEG. Electroencephalography and Clinical Neurophysiology, 106 (3), 259–261.

Casson, A. J. (2019) Wearable EEG and beyond. Biomedical Engineering Letters, 9 (1), 53–

71.

Bibliography
Node-RED. (n.d.) Documentation. Available at: https://nodered.org/docs/ (Accessed:

10/10/2024).

Eclipse Mosquitto. (n.d.) Mosquitto – An Open Source MQTT Broker. Available at:

https://mosquitto.org/ (Accessed: 12/10/2024).

Docker. (n.d.) Docker Documentation. Available at: https://docs.docker.com/ (Accessed:

14/10/2024).

Visual Studio Code. (n.d.) Remote - SSH Extension. Available at:

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh

(Accessed: 16/10/2024).

Adafruit. (n.d.) 16-Channel 12-bit PWM/Servo Driver - I2C interface - PCA9685. Available

at: https://learn.adafruit.com/16-channel-pwm-servo-driver (Accessed: 18/10/2024).

NVIDIA. (n.d.) Jetson Nano Developer Kit User Guide. Available at:

https://developer.nvidia.com/embedded/jetson-nano-developer-kit (Accessed: 22/10/2024).

Arduino. (n.d.) Arduino IDE Documentation. Available at:

https://docs.arduino.cc/software/ide-v2 (Accessed: 24/10/2024).

Python Software Foundation. (n.d.) Python Documentation. Available at:

https://docs.python.org/3/ (Accessed: 26/10/2024).

Python Package Index. (n.d.) PyPI – the Python Package Index. Available at: https://pypi.org/

(Accessed: 28/10/2024).

Rob Tillaart. (n.d.) INA226 Library Documentation. Available at:

https://github.com/RobTillaart/INA226 (Accessed: 20/2/2024).

https://www.emotiv.com/blogs/press/pro-license-updates-new-features-and-licensing-options
https://nodered.org/docs/
https://mosquitto.org/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://docs.python.org/3/
https://pypi.org/
https://github.com/RobTillaart/INA226

Page 104

Appendix

Appendix A - Engineering Drawings

Page 105

Page 106

Page 107

Page 108

Page 109

Page 110

Page 111

Page 112

Page 113

Page 114

Page 115

Page 116

Page 117

Page 118

Page 119

Page 120

Appendix B – 5v Relay Board Datasheet

Page 121

Page 122

Page 123

Page 124

Page 125

Page 126

Page 127

Page 128

Page 129

Appendix C – Arduino Uno R3

Page 130

Page 131

Page 132

Page 133

Page 134

Page 135

Page 136

Page 137

Page 138

Page 139

Page 140

Page 141

Page 142

Page 143

Page 144

Page 145

Page 146

Page 147

Page 148

Page 149

Page 150

Page 151

Page 152

Page 153

Page 154

Page 155

Appendix D – DS3240 Servo Datasheet

Page 156

Page 157

Page 158

Page 159

Page 160

Appendix E – E-Stop Datasheet

Page 161

Appendix F – INA219 Datasheet

Page 162

Page 163

Page 164

Page 165

Page 166

Page 167

Page 168

Page 169

Page 170

Page 171

Page 172

Page 173

Page 174

Page 175

Page 176

Page 177

Page 178

Page 179

Page 180

Page 181

Page 182

Page 183

Page 184

Page 185

Page 186

Page 187

Page 188

Page 189

Page 190

Page 191

Page 192

Page 193

Page 194

Page 195

Page 196

Page 197

Page 198

Page 199

Page 200

Appendix G – INA226 Datasheet

Page 201

Page 202

Page 203

Page 204

Page 205

Page 206

Page 207

Page 208

Page 209

Page 210

Page 211

Page 212

Page 213

Page 214

Page 215

Page 216

Page 217

Page 218

Page 219

Page 220

Page 221

Page 222

Page 223

Page 224

Page 225

Page 226

Page 227

Page 228

Page 229

Page 230

Page 231

Page 232

Page 233

Page 234

Page 235

Page 236

Page 237

Page 238

Page 239

Appendix H – Jetson Nano Datasheet

Page 240

Page 241

Page 242

Page 243

Page 244

Page 245

Page 246

Page 247

Page 248

Page 249

Page 250

Page 251

Page 252

Page 253

Page 254

Page 255

Page 256

Page 257

Page 258

Page 259

Page 260

Page 261

Page 262

Page 263

Page 264

Page 265

Page 266

Page 267

Page 268

Page 269

Page 270

Page 271

Page 272

Page 273

Page 274

Page 275

Page 276

Page 277

Page 278

Page 279

Page 280

Appendix I – Omron V-156-1C25 Microswitch Datasheet

Page 281

Page 282

Page 283

Page 284

Page 285

Page 286

Page 287

Page 288

Page 289

Page 290

Page 291

Page 292

Page 293

Page 294

Page 295

Page 296

Appendix J – PCA9685 Datasheet

Page 297

Page 298

Page 299

Page 300

Page 301

Page 302

Page 303

Page 304

Page 305

Page 306

Page 307

Page 308

Page 309

Page 310

Page 311

Page 312

Page 313

Page 314

Page 315

Page 316

Page 317

Page 318

Page 319

Page 320

Page 321

Page 322

Page 323

Page 324

Page 325

Page 326

Page 327

Page 328

Page 329

Page 330

Page 331

Page 332

Page 333

Page 334

Page 335

Page 336

Page 337

Page 338

Page 339

Page 340

Page 341

Page 342

Page 343

Page 344

Page 345

Page 346

Page 347

Appendix K – SRD-05VDC Relay Datasheet

Page 348

Page 349

Appendix L – Talentcell 12v Battery Datasheet

Page 350

Appendix M – XL4015 DC-DC Step-down Buck converter Datasheet

Page 351

Page 352

Page 353

Page 354

Page 355

Page 356

Page 357

Page 358

