
  

 

 

 

 

 

 

 

 

 

 



 

Abstract 

This report details progress on an arm exoskeleton for stroke rehabilitation controlled by a 

14-sensor EEG headset. The project has advanced with adjustments to the plan, focusing on 

hardware prototyping, safety and testing to ensure usability and reliability. 
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Introduction 
This project aims to develop a rehabilitative exoskeleton arm capable of wrist rotation and 

bicep curl, controlled via electroencephalogram (EEG) signals from the Emotiv EpochX 14-

channel headset. While the original Project Design Document (PDD) proposed custom EEG 

signal processing using MATLAB and Simulink, this was reconsidered due to restrictions on 

accessing raw EEG data. As a result, signal interpretation is handled through Emotiv’s 

proprietary Cloud platform. This adjustment is appropriate for the project’s current scope as a 

proof of concept demonstrating the feasibility of EEG-based rehabilitation control systems. 

Although the implementation has evolved, the project’s core structure and objectives remain 

aligned with the original plan. Early in development, it became clear that running the 

complete control stack, including motor commands and signal parsing, on the Jetson Nano 

was not feasible due to hardware and resource limitations. Specifically, three of the four 

Jetson Nanos provided had non-functional I²C buses, and one exhibited central processing 

unit (CPU) instability, preventing consistent performance. The need for more straightforward 

electrical integration and real-time control prompted a revised architecture: control logic in 

the final design is distributed across three Arduino boards, each responsible for motor control, 

sensor feedback, and interface logic, while the Jetson Nano functions as a central coordinator. 

Mechanical design also shifted from carbon fibre reinforced polymer (CFRP) to polylactic 

acid (PLA), motivated by budget limitations and the desire to use more accessible materials 

for rapid prototyping. These refinements allowed faster iteration and testing without 

compromising the overall goals: creating a portable, safe, EEG-driven assistive device for 

post-stroke arm rehabilitation. The system is being evaluated based on the ease of user 

interaction with Emotiv’s mental command training interface, which translates cognitive 

intent into discrete actuation commands. 

Requirements and Evaluation 
This section outlines how the system’s requirements evolved and how each was addressed. It 

covers key changes to the original plan, revised objectives and validation through testing. 

Together, these demonstrate the feasibility and effectiveness of the final prototype. 

Changes of Requirements 

The initial requirements outlined in CWRK-001 included assumptions that the team would 

have full access to raw EEG data from the Emotiv headset and that all signal processing and 

control logic could be managed directly on the Jetson Nano. These assumptions were not 

fully validated in early planning and were not formally listed as project risks, representing a 

gap in the initial risk assessment process. Earlier versions of the report did not explicitly 

account for potential limitations of the Emotiv platform, nor the possibility that raw EEG 

access might be restricted. This limitation should have been identified and discussed more 

thoroughly in the early requirements stage. 
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Ultimately, access to raw EEG data was restricted due to the proprietary nature of the Emotiv 

platform. This removed the requirement to develop and validate a custom EEG signal 

processing algorithm. Instead, the project adopted Emotiv’s cloud-based mental command 

processing, which offers pre-defined cognitive classifications. At the same time, this limited 

customisation was acceptable for the project’s proof-of-concept aims. 

Secondly, although initial planning treated the Jetson Nano as the central controller, 

computational and interfacing limitations became more evident during integration. While 

Emotiv’s platform handled cognitive signal processing externally, the Jetson faced issues 

related to hardware reliability (e.g., three of the four units had non-functional I²C buses, and 

one had CPU instability), as well as practical difficulties managing general-purpose input 

output (GPIO) and real-time motor control. This and the desire to modularise the system for 

easier debugging and safety led to the decision to adopt a distributed architecture. The 

updated system delegates low-level motor control and sensor feedback to three Arduino 

boards, while the Jetson Nano serves as a high-level coordinator and interface with Emotiv. 

Hardly significant delays in setting up and running simulations, mainly due to time 

constraints and software compatibility issues, meant that simulation-based verification and 

associated performance requirements were removed from the scope. This was a pragmatic 

decision to prioritise physical prototyping and hands-on testing in the available timeframe. 

Lastly, the initial requirement for a lightweight composite frame was revised due to material 

availability and lack of access to CFRP. PLA was selected as a more accessible and 

affordable alternative. While this material was sufficient for initial testing, one prototype 

failure highlighted the importance of print settings—functional strength was achieved only 

when printed at an appropriate infill density, layer height and position (see “Mechanical 

Analysis of Parts” section). 

Summary of Requirements 

This project aims to develop a proof-of-concept EEG-controlled exoskeleton for 

rehabilitation, specifically targeting bicep curl and wrist rotation functionality. The system 

must safely translate user intent into physical motion using a 14-channel Emotiv Epoc X EEG 

headset. It must operate reliably, be safe for users, and allow for limited degrees of freedom, 

making it suitable for rehabilitation scenarios. The exoskeleton must be wearable, portable 

and comfortable for extended use. 

The core functional and safety requirements are as follows: 

1. Accurate EEG Signal Interpretation – The system must recognise basic motor-

cortex imagery commands, such as left or push, via the Emotiv cloud services and 

then translate the data into mechanical action. 

2. Real-Time Actuation—The system must actuate two servo motors in real time based 

on EEG input with minimal latency. 

3. Power and Control Reliability—The robotic arm must operate independently and 

stably, using INA226 current sensors and dual 12v 6a batteries in parallel. 

4. Safe Operation—To prevent unintended motion, the system includes an emergency 

stop button, limit switches, an INA226 current cutoff, built-in overcurrent protection 

in the servo motors, and software shutdown. 
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5. Modular Architecture—Hardware must be accessible and modifiable. The final 

setup includes 3 Arduino Unos for decentralised control and a Jetson Nano as the 

system’s processing hub and Wi-Fi connection. 

6. Mechanical Feasibility – The design must support limb movement without structural 

deformation. PLA parts are printed with adequate infill and tested under torque.  

7. User Feedback Integration—Simulation software provides real-time system status, 

signal strength integrity, and training proficiency. 

These requirements are derived from the need to validate EEEG signal control in 

neurorehabilitation devices. Emphasis is placed on modularity, safety, affordability and 

demonstrating viability using consumer-accessible components. 

Justification of Changes 

The original plan relied on the Jetson Nano for I2C communication and robot operating 

system (ROS) topic control. However, hardware issues, including I2C instability and a 

damaged Jetson unit, made this unfeasible. Control was redistributed to three Arduino Unos, 

each handling specific tasks via a universal serial bus (USB) serial. This improved reliability, 

reduced wiring complexity and enabled real-time processing. 

The team initially intended to use ROS and Gazebo for system integration and simulation. 

However, as development progressed, it became clear that ROS introduced significant 

complexity and overhead disproportionate to the project’s scope, especially as simulation of 

the physical environment was ultimately deprioritised in favour of real-world testing. This led 

to a switch to message queuing telemetry transport (MQTT) and Node-RED, which enabled a 

more modular and lightweight architecture using isolated Python scripts. This approach 

improved fault tolerance and simplified debugging during hardware integration. 

Due to license changes in Emotiv’s software and firmware [Emotiv, n.d.] Node-RED was 

moved from containerisation to a bare-metal deployment to maintain compatibility. However, 

the MQTT broker remained containerised and unaffected by the licensing constraints. Note 

that our original intention was to keep the software contained for ease of use and control 

since we were running the software on a university-provided laptop.  

These changes addressed hardware limitations and increased system stability without 

affecting core functionality. 
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Demonstrating the Fulfilment of Requirements 

Each realised requirement was tested and verified through targeted evaluations during the 

integration and prototyping phases: 

1. EEG Signal Interpretation 

 EEG mental command recognition was tested using the Emotiv Epoc X and its cloud-

based software. The team verified that two distinct commands (e.g. left/right imagery) 

triggered appropriate motor responses via Node-RED and MQTT logging. 

2. Motor Actuation (Bicep and Wrist) 

 DServo 35kg servos were integrated into the PLA printed frame. Controlled tests 

confirmed consistent movement under command without stalling, using predefined 

EEG signals to trigger actuation. 

3. Power System and Sensor Monitoring 

 The INA226 current sensor was tested using controlled motor loads. The output was 

read through the corresponding Arduino and monitored via serial output on the Jetson 

Nano. Reading confirmed that the current stayed within safe thresholds. 

4. Safety Systems 

 Emergency stop functionality was verified by cutting relay power to the system mid-

operation. Four limit switches were manually triggered to confirm motion cut-off at 

physical boundaries. 

5. Modular Software Architecture 

 Each subsystem was run independently through separate Arduino boards and managed 

via modular Python scripts. The use of MQTT topics allowed isolated testing and 

fault handling. 

6. System Portability and Usability 

 The 3D printed design, supported by a shoulder strap and powered by two 12v 6A 

batteries, was tested for comfort and continuous operation. No structural failure or 

overheating was observed during testing. 

All fulfilled requirements were validated through real-time testing rather than simulation, 

which aligned with the project’s revised scope. The only section lacking was the wrist, which 

was supposed to be a 90-degree turn; however, we only achieved a 45-degree total left and 

right. This overdoes affect the proof of concept being achieved; if the team had access to 

more time and resources, this could have easily been achieved and will be discussed below. 
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Explanation of the met Requirements 

The following is a summary of how each key requirement was met and validated during 

development and testing: 

• EEG Command Recognition 

 Mental commands were captured using the Emotiv Epoc X headset. The cloud 

platform processed the signals and sent structured outputs to the Jetson Nano. 

Functionality was confirmed through consistent and repeatable control of the servos 

in response to mental input. 

• Bicep Curl and Wrist Rotation 

 Motor control was successfully implemented using two DServo 35kg servos. EEG-

triggered actions (left and right wrist rotation and up and down bicep curl) moved the 

exoskeleton arm through its two degrees of freedom (SV-T04, D-T03). Movement 

was repeatable within the physical design limits (WS-T05, SV-T04, SV-T07, D-T04, 

D-T08). 

 

Figure 1 - EEG Command Recognition 

Figure 2 - Bicep Curl and Wrist Rotation 
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• Safe Operation (Emergency Stop and Limit Switches) 

 The emergency stop function was tested successfully by cutting power via the relay 

via software (WS-T06, SF-T04, I-T01, I-0T03) . A physical emergency stops the 

power to the servos, too (I-T07) . Limit switches were triggered manually and during 

motion to halt movement as designed. However, the software range of the motors 

does not reach the limit switches (SF-T03); this is just an additional feature to ensure 

the user's safety if the servos malfunction. All safety responses were reliable and 

immediate (ELC-T03). 

• Electrical Monitoring (INA266) 

 The current draw was monitored using the INA226 chips connected to an Arduino. 

Sensor values were received by the Jetson Nano via serial and monitored using 

MQTT logs (WS-T04, WS-T05, WS-T06, WS-T07) to ensure the current remained 

within safe operating levels (SF-T01, ELC-T06). 

• System Architecture and Robustness 

 The split between Jetson Nano and Arduino proved effective. Each Arduino handles 

its own I/O tasks independently. The modular Python-MQTT system allowed fault 

isolation and debugging without complete system disruption (JN-T05). 

• Portability and Structure 

 The structure was printed in PLA and tested under load with servo actuation (M-T01). 

The system will be worn using a shoulder strap and function as a self-contained, 

battery-powered prototype, meeting user comfort and mobility design goals (M-T04). 

A PDU was created to begin with; however, due to time constraints and a multitude of 

issues, the team decided to abandon this idea. However, it was achieved for the first 

prototype. 

These requirements were demonstrated through live testing, debug logs or hardware 

validation and contributed directly to the system’s overall proof-of-concept success. 

Figure 3 - Hardware E-Stop Figure 4 - Limit Switches 

Figure 5 - Power Distribution Unit 
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Unmet Requirements 

The only significant requirement not fulfilled was the full simulation of the exoskeleton using 

Gazebo. This was initially intended to support control validation and integration with ROS. 

However, progress was limited due to time constraints and software compatibility issues. 

This shortfall did not impact the final system's physical implementation or core functionality, 

as all control and testing were successfully handled using the actual hardware and an MQTT-

based communication flow. The decision to deprioritise simulation was necessary to focus 

resources on real-world testing and system reliability, which will be discussed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tests 
This section outlines the tests to verify system functionality, safety and reliability. Each test 

group targets a specific subsystem, ensuring the prototype meets its intended use in real-

world rehabilitation scenarios
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Table of Tests 

 

Test ID Test name Test description Test pass criteria Pass or Fail 
 
 
 
 
 
 
      

EEG        
E-T01 Headset charges Headset charges and stores power Charges, stores power Pass 

E-T02 Power on the headset The headset powers on Turns on Pass 

E-T03 Bluetooth connection 
A Bluetooth connection is established between the 
Windows system and the headset Connects to the pc successfully Pass 

E-T04 Connect to the software Emotiv Suite connects to the headset 
Connects to the software 
successfully Pass 

E-T05 Sends signals to Windows system Signals received in the Emotiv suite Signals are received Pass 

E-T06 
Can interact with the software 
training suite 

Signals can be used to control in-software training 
suites 

Signals cause responses in 
software, e.g. cube Pass 

E-T07 Trained model saved as profile Can reopen and access a trained dataset 
Can access the created profile for 
the trained data Pass 

E-T08 Headset signals are consistent 
Checking the signals to make sure that they align 
with the desired results 

Signals show similar patterns when 
put through a controlled 
environment Pass 

E-T09 User Fatigue 
Understanding the best sets for training so a user 
does not get too tired and too frustrated Two 15-minute sets within an hour Pass 

     
 

 

 

  

 

  

 

    

EEG Tests (E-T Series)  

These tests verify the functionality and reliability of the Emotiv EEG headset. They cover essential actions such as charging, 

powering on, connecting via Bluetooth, interacting with software (Emotiv Suite), saving trained profiles, and ensuring the EEG 

signal's consistency. Importantly, they assess whether user training sessions are practical and not overly fatiguing, which supports 

long-term usability in rehabilitation contexts.  
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Windows 
System        
 
 
 
 
 
 

 

   

WS-T01 Docker installed Docker is installed and running on WSL 
Docker is installed and can be 
opened Pass 

WS-T02 Mosquitto is installed and running 
Mosquitto is running and configured as a server in 
Docker 

Mosquitto server running to 
connect to Pass 

WS-T03 Node-Red is installed and running Node-Red running in Docker 
Node-RED is accessible in the 
browser Pass 

WS-T04 
Node-Red connects to the MQTT 
broker 

Node-Red connected to the MQTT broker for 
communications 

Node-Red can connect to an MQTT 
server Pass 

WS-T05 
Signal sent and received through 
the firewall 

Signals from Emotiv can be sent and received 
through the firewall 

Node-Red can receive the sent 
commands Pass 

WS-T06 Signal propagated via MQTT 
Signals can be propagated through MQTT via 
Node-Red 

Node-Red can send messages of 
commands via MQTT Pass 

WS-T07 
Status messages received by 
MQTT Status messages can be received into Node-Red Status feedback can be received Pass 

  

 

 

 

 

 

 

 

 

 

     

     

Windows System Tests (WS-T Series)  

This group of tests confirms that the software environment on the Windows machine is correctly configured. It ensures the 

containerised services (Docker), MQTT broker (Mosquitto), and flow-based development tool (Node-RED) are operational. It also 

confirms that signal flow between the EEG headset and the MQTT ecosystem is functional and secure, even across system firewalls.  
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Jetson 
Nano        
 
 
 
 
 
 
 
     

JN-T01 
Jetson Nano powers via barrel 
jack. Jetson powers on and boots Jetson powers on and boots Pass 

JN-T02 
Python libraries and compiler 
installed Python and dependencies are installed 

Python is installed and can run with 
the necessary dependencies Pass 

JN-T03 Scripts running A Python Programme can run Python scripts run successfully Pass 

JN-T04 Connected to the MQTT broker 
The Python script connects to the MQTT broker for 
commands 

The Python MQTT broker can 
connect successfully Pass 

JN-T05 Signals received MQTT signals received 
Signals are received from Node-
Red via MQTT Pass 

JN-T06 
Signals sent to the motor 
controller Signals sent to the motor controller 

The motor controller receives the 
signals for controlling the servos Pass 

JN-T07 Status messages sent by MQTT Status messages sent back via MQTT 

Status messages can be sent back 
to Node-Red for status 
updates/checks. Pass 

JN-T08 PCA9658 test 
Does the PCA9658 communicate with the Arduino 
and Jetson 

Jetson receives communications 
from the PCA9658 Pass 

 
 
 
 
 
      

     

Jetson Nano/Raspberry Pi Tests (JN-T Series)  

These tests were originally intended to validate the Raspberry Pi 5 as a control unit. They check power-on behaviour, script 

execution in C++, and communication with the MQTT broker and motor controller. Though the Pi was not ultimately used in the 

final system, these tests document an important phase of development and fallback exploration before returning to the Jetson Nano.  
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Servos        
 
 
 
 
 
 
 

 

   

SV-T01 Moves when signals are received 
When the signal from the motor driver is received, 
the servos move to the correct position 

Motor moves to the position it is 
told to using PWM Pass 

SV-T02 Stops at software limits Software limits prevent over-rotation in isolation Servo can't pass limits Pass 

SV-T03 Stops at hardware limits Hardware limits prevent over-rotation in isolation Servo can't pass limits Pass 

SV-T04 Has smooth motion in small steps 
Small incremental steps when moving to allow 
smooth motion 

Movements are small but 
consistent Pass 

SV-T05 Doesn't move when not told to 
When no input is sent, the servo stays stable and 
doesn't move The servo only moves when told to Pass 

SV-T06 

Has the holding strength to catch 
the arm, and either keep it or 
slowly lower it 

Can hold an appropriate load and let an excessive 
load down slowly if necessary 

The load-bearing capacity is 
adequate to support the average 
arm Pass 

SV-T07 
Homes to "origin" at the start and 
end of the operation Homes are ready for putting on and storage 

Servo homes when the system 
turned on and off Pass 

SV-T08 
Handles the Weight of a factor of 
1.8     Pass 

 
 
 
 
 
 
 
      

     

Servo Tests (SV-T Series)  

These tests assess the behaviour of the servo motors that move the exoskeleton. They ensure accurate motion control, enforce 

software and physical movement limits, and check for stable holding strength and safe load bearing. These are critical for confirming 

that the system performs safe and smooth limb movements.  
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Safety 
features        
 
 
 
 
 

 

   

SF-T01 
Over-current protection cuts 
power 

Over-current protection cuts power to the relevant 
components 

Power gets cut where necessary 
for safety measures to prevent 
operation Pass 

SF-T02 
Mechanical limits prevent over-
rotations 

Mechanical limits prevent over-rotation in a 
partially completed system 

Servos cannot move outside their 
limits Pass 

SF-T03 
Software limits prevent over-
rotations 

Software limits prevent over-rotation in a partially 
completed system 

Servos cannot move outside their 
limits Pass 

SF-T04 
Software emergency stop works in 
isolation 

Software emergency stop prevents the passing of 
commands 

Emergency stop halts command 
propagation Pass 

SF-T05 
Mechanical emergency stop works 
in isolation Mechanical emergency stop prevents operations 

Stops system operation within the 
necessary modules  

    Pass 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

Safety Feature Tests (SF-T Series)  

Focused on protecting users and hardware, these tests verify that emergency stop mechanisms work mechanically and via software. 

Over-current protection and movement limit enforcement are also validated to reduce the risk of user injury or hardware failure.  
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Integration        
 
 
 
 
 
 
 

 

   

I-T01 
Messages are passed reliably 
around the system 

Messages are passed through the pipeline with 
maintained integrity 

The message that is sent first is 
received last, with all necessary 
information intact and correct Pass 

I-T03 
Commands from the headset are 
followed 

Commands sent are followed and interpreted into 
movement appropriately 

The movements match the 
expected operations Pass 

I-T04 
Commands being sent do not 
override safety limits 

All safety limits are followed in an integrated 
system using all systems 

Safety limits are followed, cuts off 
and stops where required Pass 

I-T05 

Status commands reach the 
Windows system to enforce limits 
via software 

Status messages are propagated back to the 
Windows system to display status and enforce 
limits 

Status is sent back through the 
system and is used to show and 
operate with clear intent Pass 

I-T06 

Emergency stops (Software) 
prevent operation, and the status 
is sent back 

When emergency stops are active, the status 
shows as such while the operation is ceased 

The emergency stop notification 
shows Pass 

I-T07 

Emergency stops (Hardware) 
prevent operation, and the status 
is sent back 

When emergency stops are active, the status 
shows as such while the operation is ceased 

The emergency stop notification 
shows Pass 

I-T08 
Disconnections pause operation 
safely. 

When a disconnection occurs, the exoskeleton 
stops operating safely for removal or awaits 
reconnection 

Operation ceases to prevent 
negligent movements and prevent 
damage and harm to users and 
property. Pass 

I-T09 
Power Supply and Distribution 
unit testing 

Test the PDU and PSU to ensure they properly 
distribute power across all components, including 
the Jetson Nano, Arduino, and servo motors. 

Ensure no overheating or power 
instability occurs when the system 
is under load. Pass 

     

     

Integration Tests (I-T Series)  

These tests validate full-system functionality across all modules. They confirm that messages from the EEG headset traverse the 

signal pipeline correctly and that all components (headset, server, actuators, UI) remain in sync. Crucially, safety features are tested 

within the full operational context, not just in isolation.  
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Electronics 
Test        
 
 
 
 
 
 

 

   

ELC-T01 Incorrect Wiring 
Incorrect wiring, for example, a relay being wired 
into the I2C bus 

Works as intended, a mitigation 
would be to draw/write up 
schematics and circuit diagrams Pass 

ELC-T02 PDU Testing 
PDU “Doesn’t Work” as in a multitude of physical 
component issues we can’t direct 

Pre-test every component within 
the PDU to allow us to narrow 
down the issue Pass 

ELC-T03 Debugging Issues 
Following ELC-T03, we can use Python scripts for 
testing and Python for our final program. 

It helps solve potential issues. If we 
know there are no hardware 
issues, it's a software issue, and 
vice versa. Pass 

ELC-T04 C Connector Damaged 
Is our C connector to our PI-5 damaged? Use GPIO 
as a power route to test 

Can the PI be powered in other 
ways? Yes? Pass the test. Pass 

ELC-T05 Soldering Bridges 

Ensuring careful planning, visual inspection, testing 
with a continuity multimeter, and cleaning the 
board frequently during building 

If there are no short circuits and 
the description has been followed, 
and the system turns on, pass the 
test. Pass 

ELC-T06 Correct Flow 

Measure the voltage and current output of the 
overall PDU after the ELC-T02 and the build 
process.   Pass 

ELC-T07 Over-Heating 
Thermal testing, proper spacing of components 
and heat sink on pi-5  Pass 

ELC-T08 Full System Test 

Overload the system and “stress” it out to test its 
overall capabilities under the maximum loads a 
user of the arm could output   Pass 

     

Electronics Tests (ELC-T Series)  

These tests ensure electrical system integrity, including correct wiring, functional power distribution, thermal safety, and the system's 

ability to tolerate stress. They also verify mitigation strategies for faults like solder bridges or connector failures, making them 

essential for long-term hardware reliability.  
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Materials       Pass 
 
 
 
 
 
     

M-T01 

3d prints are strong enough to 
take the weight and forces applied 
to them 

Test if the parts can withstand loads over the 
expected 

Parts do not break under 
anticipated and within reasonable 
overloaded bounds Pass 

M-T02 

Materials have low enough 
friction to move around or on 
each other reliably. 

Test if sliprings and pivots can move smoothly 
when actuated by servos 

Parts move smoothly and 
consistently Pass 

M-T03 
Straps have enough rigidity to 
hold the exoskeleton in place 

Test if, when under operation, the straps are rigid 
enough not to let the exoskeleton hang loosely or 
move unexpectedly 

Straps hold the exoskeleton firmly 
in place to prevent movements in 
unintended directions Pass 

M-T04 The design fits on the arm 
Test if the parts fit onto someone's arm once 
assembled 

Someone can fit into the design, 
and it is comfortable. Pass 

     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Materials Tests (M-T Series)  

These tests evaluate the exoskeleton's mechanical design. They confirm that 3d-printed parts are strong enough, that pivot joints and 

straps function correctly, and that the assembled structure fits the user comfortably and securely.  
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Dynamics        
 
 
 
 
 
  

 

  

D-T01 Raise (lifting) the arm 
Can we raise the arm by 45 degrees to each point 
and hold the arm there 

An arm reaches and maintains the 
target position without stuttering. 
No excessive strain on motors. 
Smooth descent. Pass 

D-T02 Wrist rotation 
Can we rotate the arm to its maximum points and 
hold the wrist in place 

The wrist rotates smoothly and 
accurately. The system does not 
overshoot the angle or struggle to 
hold position. Pass 

D-T03 Sequential movement test 
Can we lift the arm 45 degrees, rotate the wrist, lift 
again and then return to the resting position 

No conflicting commands or erratic 
movements. Movements transition 
smoothly without jerking. Pass 

D-T04 Resistance load test 
Can the arm lift more than our subject’s arm 
weight? (try on other people) 

The arm holds steady without 
slipping. The system detects 
overload and prevents damage. pass 

D-T05 Rapid Switching 

Can the project reliably switch between each 
movement? Speed is not required, but it will stress 
test the system. 

No command is ignored or 
misinterpreted—no unexpected 
stalling or instability/locking. Pass 

D-T06 Emergency stop 
Can the arm safely stop the arm whilst it is in 
motion 

The arm halts immediately without 
dropping. Emergency stop does not 
lock the system permanently Pass 

D-T07 Project Fatigue 
See if the project itself is reliable over extended 
use 

The system remains responsive 
throughout. Minimal signal drift. Pass 

D-T08 User Fatigue 

What is the average amount of time a user can use 
the arm for (maybe see how long it takes to “get 
used to it” too) 

The user can use over the 
recommended time, which is 15 
minutes Pass 

Dynamics Tests (D-T Series)  

These tests simulate real-world operation by commanding arm and wrist motions under different conditions. They measure 

performance under repeated use, stress, weight load, and rapid switching between commands. They also assess how the system reacts 

to emergency stop inputs and how the user physically tolerates extended use.  
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Explanation of Test Sections 

EEG Tests (E-T Series)  

These tests verify the functionality and reliability of the Emotiv EEG headset. They cover 

essential actions such as charging, powering on, connecting via Bluetooth, interacting with 

software (Emotiv Suite), saving trained profiles, and ensuring the EEG signal's consistency. 

Importantly, they assess whether user training sessions are practical and not overly fatiguing, 

which supports long-term usability in rehabilitation contexts.  

Windows System Tests (WS-T Series)  

This group of tests confirms that the software environment on the Windows machine is 

correctly configured. It ensures the containerised services (Docker), MQTT broker 

(Mosquitto), and flow-based development tool (Node-RED) are operational. It also confirms 

that signal flow between the EEG headset and the MQTT ecosystem is functional and secure, 

even across system firewalls.  

Jetson Nano/Raspberry Pi Tests (JN-T Series)  

These tests were originally intended to validate the Raspberry Pi 5 as a control unit. They 

check power-on behaviour, script execution in C++, and communication with the MQTT 

broker and motor controller. Though the Pi was not ultimately used in the final system, these 

tests document an important phase of development and fallback exploration before returning 

to the Jetson Nano.  

Servo Tests (SV-T Series)  

These tests assess the behaviour of the servo motors that move the exoskeleton. They ensure 

accurate motion control, enforce software and physical movement limits, and check for stable 

holding strength and safe load bearing. These are critical for confirming that the system 

performs safe and smooth limb movements.  

Safety Feature Tests (SF-T Series)  

Focused on protecting users and hardware, these tests verify that emergency stop mechanisms 

work mechanically and via software. Over-current protection and movement limit 

enforcement are also validated to reduce the risk of user injury or hardware failure.  

Integration Tests (I-T Series)  

These tests validate full-system functionality across all modules. They confirm that messages 

from the EEG headset traverse the signal pipeline correctly and that all components (headset, 

server, actuators, UI) remain in sync. Crucially, safety features are tested within the full 

operational context, not just in isolation.  

Electronics Tests (ELC-T Series)  

These tests ensure electrical system integrity, including correct wiring, functional power 

distribution, thermal safety, and the system's ability to tolerate stress. They also verify 

mitigation strategies for faults like solder bridges or connector failures, making them 

essential for long-term hardware reliability.  
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Materials Tests (M-T Series)  

These tests evaluate the exoskeleton's mechanical design. They confirm that 3d-printed parts 

are strong enough, that pivot joints and straps function correctly, and that the assembled 

structure fits the user comfortably and securely.  

Dynamics Tests (D-T Series)  

These tests simulate real-world operation by commanding arm and wrist motions under 

different conditions. They measure performance under repeated use, stress, weight load, and 

rapid switching between commands. They also assess how the system reacts to emergency 

stop inputs and how the user physically tolerates extended use.  
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Updated Risk Assessment  
 

Table of Risks 

Risk ID Risk Name Severity * 

Likelihood 

Score Mitigation Mitigated 

Severity * 

Likelihood 

Residual 

Risk 

       

  -Risk to Team 

Members 

          

RTM-001 Stress and Burnout 5*4 20 Follow the Gantt chart, taking weekends and 
holidays off 

1*2 2 

RTM-002 Illness 2*4 8 Have allocated sick days, weekend breaks and 

holidays in the plan/Gantt chart 

1*3 3 

RTM-003 Medical Constraints 5*2 10 Have allocated sick days, weekend breaks and 
holidays in the plan/Gantt chart 

4*1 4 

RIM-004 In proper us of GIT 5*3 15 Familiarise ourselves with GIT with practice 
projects and ensure branching 

5*1 5 

    
  

  
  

  -Risk to Derail the 

Project 

  
  

  

RDP-001 EEG Headset Not 
Working 

4*4 16 Spare Headset or Switch Projects / Make sure it 
works VERY early 

2*1 2 

RDP-002 Poor Time 
Management 

4*2 8 Keep referring to the plan and the Gantt chart 
alongside regular meetings 

1*2 2 

RDP-003 Diversion Externally 3*3 9 Refer to the plan and Gantt chart. Team can 
ground one another 

2*2 4 

RDP-004 Financial Constraints 3*3 9 We’ll have to share the expenses 2*2 4 
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RDP-005 Compliance and 
Standards 

5*2 10 Ensure that Safety and Ethics are upheld 
throughout the whole project 

2*1 2 

RDP-006 Scope Creep 5*3 15 Refer to the plan alongside weekly meetings and 

grounding one another 

2*2 4 

RDP-007 The Testing 
Environment is not 
suitable 

5*2 10 Refine Algorithms for filtering noise 2*2 4 

RDP-008 Disagreements 5*3 15 Discussions on changes and decisions during 

meetings to voice opinions professionally 

2*2 4 

RDP-009 Lack of 
Communication 

5*2 10 Weekly meetings, outside communication and 
social apps 

2*1 2 

RDP-010 User Participation 2*5 10 The Team can test on themselves 2*6 6 

RDP-011 Financial Constraints 

from the University 

3*5 15 The Team can use their funds 2*2 4 

RDP-012 Miscommunication 
between the Team and 

the Supervisor 

3*3 9 Weekly meetings with the supervisor 2*1 2 

RDP-013 Hard-disk Failure 5*1 5 GitHub Repository and Local Backups 1*1 1 

RDP-014 Hardware Failure 4*3 12 The Team buys new components, or we use 
spares we can find   

2*2 4 

    
  

  
  

  -Risk to Users of the 

Product 

  
  

  

RUP-001 Electric Shock 5*3 15 Safety Testing with the Team 2*1 2 

RUP-002 Injury to the Arm 5*2 10 Safety Testing with the Team 2*1 2 

    
  

  
  

  -Electronic Risks 
  

  
  

RER-001 Pi-5 PolyFuse 
tripping/popping 

5*4 20 Schematics, circuit diagrams, visual inspection, 
and voltage and current flow testing 

5*2 10 

RER-002 Incorrect Wiring 4*4 16 Schematics and circuit diagrams with a 
continuity multimeter testing 

4*1 4 
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RER-003 Bridging Connections 5*4 20 Consistent cleaning during the build process and 
following the preplanned circuit diagram 

5*1 5 

RER-004 Over-Heating 5*3 15 PDU Case CAD design, using the SolidWorks to 

visualise the whole complete structure 

4*1 4 
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What has changed? 

Here’s a summary of the most significant changes in the risk management plan, focusing on 

the most impactful risks:  

1. Internal Risks (Team Member-related)  

• RTM-001 - Stress and Burnout:  

Change: Emphasis has been placed on following the Gantt chart and taking regular 

breaks (weekends/holidays) to manage stress and burnout.  

What’s Changed: Mitigation strategy refined, reducing residual risk from 20 to 2.  

• RIM-004 - Inappropriate Use of GIT:  

Change: The team will familiarise themselves with GIT through practice projects and 

ensure proper branching practices.  

What’s Changed: The risk mitigation was added, lowering the residual risk from 15 

to 5.  

2. Project Derailment Risks  

• RDP-001 - EEG Headset Not Working:  

Change: The team now ensures the headset is tested very early, with a backup plan 

(spare headset or project switch) in place.  

What’s Changed: Mitigation refined; residual risk dropped from 16 to 2.  

• RDP-002 - Poor Time Management:  

Change: Focused on regularly referring to the Gantt chart and having consistent 

meetings to manage time effectively.  

What’s Changed: The enhanced plan reduced residual risk from 8 to 2.  

• RDP-006 - Scope Creep:  

Change: Weekly meetings and strict adherence to the plan to prevent the scope from 

expanding beyond what was agreed upon.  

What’s Changed: Residual risk reduced from 15 to 4.  

• RDP-007 - Testing Environment Not Suitable:  

Change: Refining algorithms for noise filtering as a mitigation to ensure the testing 

environment is viable.  

What’s Changed: Residual risk lowered from 10 to 4.  

3. Risks to Users  

• RUP-001 - Electric Shock:  

Change: The team will conduct thorough safety testing within the group to ensure no 

electric shock hazards exist before user testing.  

What’s Changed: Residual risk has been significantly reduced from 15 to 2.  

• RUP-002 - Injury to Arm:  

Change: Similar to electric shock, safety testing within the team ensures that injury 

risks are managed early.  

What’s Changed: Residual risk reduced from 10 to 2.  
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4. Electronic Risks  

• RER-001 - Pi-5 PolyFuse Tripping/Popping:  

Change: The risk of fuse tripping has been mitigated by using detailed schematics 

and circuit diagrams and performing voltage/current flow testing.  

What’s Changed: Residual risk reduced from 20 to 10.  

• RER-002 - Incorrect Wiring:  

Change: Schematics, circuit diagrams, and continuity testing are emphasized in the 

mitigation.  

What’s Changed: Residual risk reduced from 16 to 4.  

Summary of Key Updates  

• Refined mitigations focus on early detection, continuous monitoring, and specific 

actions (such as testing and adhering to plans).  

• Residual risk reduction in critical areas like time management, EEG headset 

functionality, scope creep, and safety testing demonstrates improved preparedness.  

• New risk mitigation strategies for GIT usage and project derailment have been 

implemented to improve project flow and prevent setbacks.  

These changes ensure the project is more resilient and well-prepared for unforeseen 

challenges, with a focus on key risks that could significantly impact the project’s success.  
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Design 
This section presents the key design decisions behind the hardware, software and system 

architecture. It outlines how each element was developed to meet usability, modularity and 

performance project goals. 

Bill of Materials 

Arduino Uno R3 Emotiv Epoc X Mosquitto (MQTT) SolidWorks 

Assorted M3 

Fasteners 

Foam Tape Node-RED Velcro Straps 

Craft Foam Hot Glue PLA Filament Windows Laptop 

Docker INA226 with 0.01Ω 
shunt resistor 

PowerShell Wire, solder and 
connectors 

DServo 35kg Jetson Nano Python  

Emotiv Cortex Limit Switch V-156-

1C25 

Relay SRD-05VDC-

8L-C 

 

 

Emotiv BCI 

The Emotiv Epoc X 14-channel EEG headset was used as the primary brain-computer 

interface (BCI) for capturing user-intended neural signals to control the robotic arm. The 

headset enables non-invasive monitoring of brainwave activity and transmits processed 

cognitive data to the system using Emotiv’s proprietary software suite. The primary tools that 

we were able to utilise included: 

• Emotiv Pro – for device connection, signal quality assurance, and real-time 

monitoring. 

• Emotiv BrainViz – for visualising and interpreting the frequency bands and cognitive 

states. 

• Emotiv BCI – training the control outputs from specific user-intended brain activities. 

BCI Testing Environment 

In typical academic or clinical research, EEG signal acquisition is performed in controlled 

environments such as Faraday cages or signal-shielded rooms to reduce environmental 

interference and improve signal-to-noise ratio. “To ensure good quality digital EEG recording 

in clinical use, the following standards have been adopted for recording, storing, reviewing 

and exchanging EEGs among clinicians and laboratories.” [Nuwer et al., 1998] However, we 

intentionally opted not to replicate this setup. Our goal was to evaluate how robust the system 

would be in a typical home setting, which is the intended real-world deployment environment 

for a rehabilitative BCI device.  

Even though clinical testing environments are common [Alexander, J. Casson, 2019], we 

designed our protocol around home use cases. A realistic home setup might include a TV, Wi-

Fi routers, phones, and other electronics that can generate electromagnetic interference. We 

simulated this by running tests in a room with a desktop PC and two active mobile phones all 

connected to the internet and Bluetooth earphones connect to one of the mobile phones. This 
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allowed us to understand how resilient the system was to interference in uncontrolled 

settings. 

Environmental Risk – EEG Noise 

EEG systems are highly sensitive to electrical and motion-based artefacts [Alexander, J. 

Casson, 2019]. In our case, common sources of interference included Bluetooth traffic, 

inconsistent electrode contact due to user movement, and RF noise from mobile devices. 

Despite the lack of isolation, signal quality was generally adequate due to the real-time 

diagnostics provided by Emotiv Pro. This allowed us to adjust electrode positions and verify 

signal quality before each training or testing session. The system’s usability in this setting 

supports its suitability for unsupervised home rehabilitation tasks, provided that best practices 

(e.g. minimal movement, proper contact) are observed. 

Emotiv Pro 

Emotiv Pro is useful for examining the fundamental interaction between thought and what the 

BCI can see. It offers real-time visualisation and signal diagnostics across the 14 EEG 

channels on the Epoch X.  

• Channel Monitoring: The software displays each of the 14 electrode channels as a 

graph. These channels are mapped to the international 10-20 system for EEG 

electrode placement:  

o AF3 and AF4: Located on the anterior frontal lobe, monitoring prefrontal cortex 

activity.  

o F3 and F4: Positioned on the left and right frontal lobes, linked to higher-level 

cognitive function.  

o F7 and F8: Situated on the lateral frontal areas, associated with emotional and 

decision-making processes.  

o FC5 and FC6: Frontocentral regions, bridging motor planning and cognitive areas.  

o T7 and T8: Placed above the ears over the temporal lobes, often monitoring auditory 

and language processing.  

o P7 and P8: Over the parietal lobes, involved in sensory integration and spatial 

awareness.  

o O1 and O2: Located at the back of the head over the occipital lobe, monitoring visual 

processing.  

• Best Practices: Before any training or data collection session, ensuring that all 

electrodes are in complete contact and have high EEG quality and signal integrity is 

crucial. This requires the correct placement and properly soaked saline electrodes to 

maintain consistently.  

• Real-Time Feedback: Emotiv Pro provides a continuous stream of raw EEG signals, 

allowing users and observers to visualise neural activity across various frequency 

bands and per electrode.  
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The array of electrodes allows us to see the different mental responses to stimuli. Everyone 

has a unique, fingerprint-like response to commands or prompts, meaning that the data can 

look very different from person to person.  

For comparison, here are some different stimulus responses to discuss.  

 

When analysing each set of EEG graphs, it's possible to determine which brain regions 

exhibit electrical activity in response to specific stimuli or commands. The examples 

provided show that dominant reactions are consistently concentrated in the brain's frontal 

regions. This includes the prefrontal and frontal lobes, which are commonly associated with 

executive function, decision-making, and working memory.  

Notably, the activity remains frontal mainly even in response to commands like “push, " 

which one might intuitively expect to engage primarily the motor cortex located further back 

in the brain. This suggests that, for this user, cognitive processing and intention formulation 

play a more significant role than direct motor planning during interaction with the BCI 

system. It outlines how mental effort and focused thought, rather than sole physical motion 

intent alone, can represent the same command or idea within different people.  

Figure 6 - Push Command Figure 7 - Arithmetic Operations 

Figure 9 - Recall of Music Figure 8 - Animal Recall 
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Emotiv BrainViz 

BrainViz offers intuitive visualisation of EEG data across different brainwave frequency 

bands. This is particularly useful for understanding user cognitive states and identifying 

patterns during training sessions. 

• Wave Types: 

• Delta (0.5–4 Hz): Associated with deep sleep. 

• Theta (4–8 Hz): Reflects drowsiness, meditation, or frustration. 

• Alpha (8–12 Hz): Indicates relaxed wakefulness, calmness. 

• Beta (12–30 Hz): Linked to concentration and mental activity. 

• Gamma (30–100 Hz): Connected to learning, memory, and sensory 

perception. 

These bands are extracted from the 12 primary EEG channels displayed in Emotiv Pro. 

Understanding these patterns helps in correlating cognitive states with command accuracy 

during robotic control. 

 

 

The variation in brainwave activity across the four figures highlights how different mental 

strategies used to trigger the same "push" command yield distinct neural patterns: 

Figure 11 - BrainViz Push Command Figure 10 - BrainViz Arithmetic Operations 

Figure 12 - BrainViz - Animal Recall Figure 13 - BrainViz Recall of Music 
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• Figure 1 (Simple Arithmetic): This strategy activates theta, alpha, and beta waves. 

Theta reflects focused internal attention, alpha indicates a relaxed but alert mental 

state, and beta suggests active cognitive processing. This combination is typical of 

structured mental tasks involving sequential thinking and logic. 

• Figure 2 (Mental Push Against Wall): The "pure" push imagery shows theta and 

alpha dominance, suggesting that motor imagery taps into subconscious focus and 

visualisation, with minimal high-frequency cognitive engagement. This is likely the 

most intuitive and direct representation of the intended BCI command. 

• Figure 3 (Listening to Music Internally): This produced primarily theta activity. 

The lower-frequency dominance suggests a passive, imaginative or emotional state, 

which, while internally engaging, may be less effective for precise command 

execution due to limited cognitive focus. 

• Figure 4 (Recalling Animal List): This figure exhibits theta and gamma activity. 

Theta indicates memory recall, while gamma is associated with higher-order 

processing and memory integration. This suggests deeper cognitive retrieval 

processes, which may lead to inconsistent training outcomes due to variability in 

memory load. 

These results demonstrate that simpler, focused mental imagery (Figure 2) produces more 

consistent EEG patterns for BCI training. In contrast, abstract or memory-based strategies 

(Figures 3 and 4) can introduce noise or cognitive overhead. The main issue would be 

differentiating the mental imagery, which would need further testing. However, this does 

suggest that training protocols should prioritise direct, visual-motor imagery tasks to improve 

classifier reliability and reduce overfitting or signal ambiguity. 

Emotiv BCI 

Emotiv BCI enables the training of specific user mental commands and maps them to actions 

on the robotic system. The software provides visual feedback on performance, model 

confidence, and training quality. 

• Training Process: 

• Users train specific thought patterns ("push", "pull", "lift" and “rotate right”) 

over multiple short sessions. 

• Visual indicators assist in identifying well-trained models vs. over-trained or 

poisoned models. 

• Dataset Quality: 

• Acquiring a good dataset created risks and problems we couldn’t have 

anticipated. Getting a good dataset requires a multitude of different brain 

activities; however, since we’re limited to 14 channels, it posed a few issues. 
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• Good training data: Clear and consistent mental effort. 

Here is an example of the best training set we got. Clear, consistent, 

and range data prevent commands from getting mixed up when using 

the headset.  

The Push command was a mental visual image of the patient pushing 

against a wall. This command was the easiest to maintain 

The Pull command was simple, quick arithmetic, yet hard to maintain. 

If you paused for too long, the command would drop. 

The Lift command played/sang a song in the patient's head. On paper, 

this is a great decision. However, it was a struggle to receive consistent 

command outputs, but it was still reliable enough for the task. 

Finally, the Rotate Right command recalls a list of animals. This 

command seemed to get the least response from the headset and was 

challenging to output. 

 

Figure 14 - Initial Training with 5 commands Figure 15 - Initial Training with "Drop" vs "Lift" 
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• Poisoned data: This can be introduced unintentionally by distractions 

or inconsistent thoughts. This was originally a problem when the 

central patient tried to sing/play a song in their head. The patient would 

also view the music video, which would cross-contaminate with the 

Push command. See the image for an example of the closely related 

data. 

Additionally, there should always be two people attempting to record 

data: a patient and an operator. Below is a poisoned data set where the 

patient accidentally accepted a 0/100 training piece. Since Emotiv is 

locked down and doesn’t allow you to undo or revert data, the entire 

data set was poisoned, which incidentally contaminates ALL of the 

data. 

• Over-trained models: This was also an unforeseen risk of 

overtraining. The best spots seem to be between 10 and 20 sets. 

Anything over 25, you risk overtraining the command, and it can 

eventually become poisoned or useless. As stated above, the team's 

primary patient began visualising a music video with the song they 

were playing in their head, and this began to bring the data points on 

the graph too close together and became very hard for the patient to 

distinguish between the two commands. In this application, you don’t 

want to be mixing commands. 

• Best Practices: 

• Stop training if concentration wanes. 

• Avoid creating too many actions at once. 

• Avoid overtraining a specific dataset. 

• Only proceed once the system gives high consistency scores for a command. 

 

Figure 16 - Full Command Set 
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When observing someone during training, although a user may feel fine, you can often notice 

mannerisms showing fatigue or stress, which should be brought up to the user to help follow 

the best practices mentioned above. A user may not at first realise when they are starting to 

show fatigue, as they may not have learnt what the mental fatigue from thought and BCI 

training feels like if they haven’t used a similar system before.  

These changes can be evidenced through tone of voice, changes in breathing – e.g. sighs or 

heavier breathing – or facial expression, with fatigue often showing as sunken features on the 

face or more vacant eyes.  

Stress can affect not only concentration, but also data quality, as their state of mind differs 

from when the command was first recorded, or their brain can begin to wander. Fatigue can 

also reduce data quality. The brain may not create as vivid an image or thought as the 

original, leading to worse quality being fed into the already unforgiving algorithm. 
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Hardware 

This section details the physical components used to build the system, including electronic 

modules, mechanical parts and structural materials. Each item was selected to balance 

functionality, cost and ease of integration within a wearable exoskeleton. 

Mechanical 

This section outlines the mechanical design of the exoskeleton, including 3d-printed 

components, joint mechanisms, and fastening methods. The design prioritises comfort, 

durability, and ease of assembly for rehabilitation use. 

Approach 

The exoskeleton design process began with creating the bicep brace, which was a critical 

starting point as it serves as the primary interface with the body. The brace provided a fixed 

point from which the rest of the system could be developed and expanded, with placement 

and adjustment of additional elements occurring around it.  

We opted for a modular approach for the brace using two C-shaped cups, similar to crutch 

designs. This choice was practical because it allowed for interchangeable components, 

enabling easy modifications and iterations without reprinting the entire bicep section 

completely. This flexibility ensured the system could be tailored to different users, as parts 

could be resized or adjusted to fit varying arm sizes. Furthermore, straps allowed additional 

size variation within the same-sized cups, adding to the system’s adaptability.  

 

 

 

 

Figure 17 - Bicep Arm Adaptability 
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The design process included measurements of Harvey to ensure each component fit him 

properly without being excessively bulky. Since the system was intended for prototyping and 

rehabilitation, it was essential to maintain a usable, if unrefined, form factor that could be 

worn during testing and demonstrations.  

Working within the constraints of available equipment and components, we made a conscious 

decision to prioritize the system's technical feasibility instead of achieving full mobility.  

More advanced manufacturing methods and materials could theoretically enable smaller, 

more substantial parts, but given our setup, we focused on achieving functional reliability 

using accessible means. PLA was chosen as the primary material due to its fast print times 

and suitability for rapid prototyping. This allowed us to quickly iterate small components, 

especially, and iterate design elements to fit between, even if PLA’s strength and durability 

fell short of theoretical alternatives.  

Once the bicep brace was established, the next critical step was determining the optimal 

placement of the servo on our test subject, Harvey. Ensuring that the servo allowed proper 

elbow flexion was essential for testing the effectiveness of the mechanism. We positioned the 

servo at the elbow crease. This area exhibits minimal movement when the arm is straight, 

ensuring the system does not hinder the elbow's natural motion.  

With these foundational elements in place, we focused on designing the system to allow for 

iterative development and easy modification. A key factor in this approach was the limitations 

imposed by our 3d printing setup, particularly the Ultimaker 3. This printer had a fixed build 

volume, which set a size constraint for the parts. However, it was crucial to maximise the 

length of components that would extend along the arms. More significant parts reduced the 

fastening points, decreasing potential failure points at these critical joints.  

Another important consideration was the need for frequent iteration. Design changes were 

inevitable as we adapted to new insights, unforeseen challenges, and evolving safety and 

Figure 18 - Elbow Servo Motor 
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performance requirements. This iterative process allowed us to refine and improve the system 

continuously.  

The design also required careful consideration of part separations. Making each component a 

separate print was necessary for several reasons, including accommodating the printer's build 

volume and allowing for individual modifications. This made the process more flexible and 

responsive to design changes, while reducing the complexity of reprinting entire sections of 

the system for small quality-of-life or mechanical tweaks.  

The design elements of the exoskeleton were broken down into various parts, each designed 

to serve a specific function within the system or to support a safety mechanism. Key 

components included:  

• Bicep brace  

• Arm cups  

• Elbow servo mount  

• Elbow non-powered pivot  

• Elbow upper and lower limit switch mounts  

• Forearm brace  

• Wrist collar lower mount  

• Wrist collar upper mounts  

• Wrist mount side bars  

• Wrist collar  

• Wrist servo mount  

• Wrist limit switch mount  

• Wrist linkage bar  

Each component was individually printed, paying attention to print orientation and infill 

density and balancing strength, material, and time efficiency. This ensured that the parts were 

durable where necessary for safety and function, while minimising the downtime between 

iterations that could complicate the printing process for future additions. Additionally, the 

modularity of the design allowed for easy repair when things did unfortunately go wrong, 

with individual reprints keeping downtime minimal and helping to maintain momentum 

during development and testing.  

Designing individual parts was simple yet time-consuming, as one had to consider both the 

size and spacing of arts relative to where the design could be foreseen and maintain an 

awareness of hole placement for heat-sunk threaded inserts. Most construction uses M3 bolts, 

threaded inserts, and nuts throughout the design. This made assembly easy and meant that 

designs were consistent and did not require multiple tools to assemble and disassemble. Only 

a hex key and a screwdriver are needed to turn bolts, and pliers or sockets can hold nuts in 

place.  
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Designs also had to be designed with the awareness that certain elements needed support to 

maintain quality. Although some designs could be printed, adding extra design elements, 

especially on the exposed wrist servo bracket, was necessary to prevent damage in axes that 

do not align with the layer lines' optimal strength.  

Mechanical Analysis of Parts 

To save printing time, some analysis was done on the parts to check that they wouldn’t buckle 

under the pressure from the user's arm or the force exerted by the servos. This was prioritised 

on the parts expected to exert the most stress on them. In contrast, others were deliberately 

designed to have an extremely high safety factor, preventing the need for analysis on all parts. 

The high stress parts were often in contact with the servos or around the elbow or wrist joints, 

as these have high momentary or single point forces.  

The parts all use PLA (Polylactic Acid), which can be printed with different infills. Because 

of this, each part could be modelled with different infills, resulting in varied results. At 100% 

infill, the Young's Modulus was taken as ~3.2 GPa. At 50%, it was taken as ~1.25 GPa. At 

20%, it was taken as ~0.3 GPa. This shows a dramatic shift in the material strength between 

infill levels, which could result in very different performances from the different parts. It also 

means that while the lower infill could have been used for the less stress-intensive parts, an 

infill that was too low could also result in those parts failing.  

In addition, the average mass of the human arm is ~5% (reference: the human machine) of 

the weight of the entire human body. The subject who tested the arm had a mass of close to 4 

kg. This meant that stress and strain calculations based on the initial values given were 

possible.  

A factor of safety of two is standard for a project of this nature so that the parts can withstand 

any extreme scenario that may be unforeseen in the mechanical analysis. While the expected 

loads may be lower, once the prototype is operational, environmental factors may align to 

produce forces higher than anticipated during the design phase.  

Rigid Link:  

The rigid link required the most trial and error, as it was only a small part compared to the 

rest of the arm. This meant that parts could be fabricated and broken much quicker than any 

of the others.  

The rigid link is the part which connects the wrist-mounted servo to the bearing on the inside 

of the arm, which translates the movement between the two. Because of this, it needs to be 

able to withstand high shearing stresses, particularly while still being a small and thin part to 

fit within the confines of the parts surrounding it.  
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The cross-section of the part across the rigid link is a 5x5mm square which means that the 

flexural stress and strain should follow a parabolic distribution across the height of the 

square. The Equation is as follows:  

  

Where:  

 σ = bending (flexural) stress (MPa)  

M = applied bending moment (Nmm)  

y = distance from the neutral axis to the point of interest (mm)  

I = Second moment of area (mm^4)  

   

 

Figure 19 - Wrist Linkage Bar 
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For a rectangular bar:  

  

And:  

  

   

So, in this case:  

I = 52.08mm^4  

y = 2.5mm  

σ = 68MPa  

Solve for maximum moment:  

  

Any moment above this value would result in the part breaking.  

Next is to find the breaking load:  

P=4MmaxLP=4MmaxL 

  

Where:  

P is the breaking load  

L is the length of the beam  

P=4×1416100=56.64NP=4×1416100=56.64N 
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This value is above the expected load, so the part is adequate for the system. This showed 

that 85% infill would be adequate for the part's usage.  

The everyday stresses on this part aren’t an issue, as the high-density infill results in the part 

being resistant to normal loads. If the infill had been lowered, this may have resulted in 

concerns. However, all issues with this part were related to its bending down its longest side. 

Also, it will always fail due to the bending stress before any other method, such as buckling 

or axial stress. There was also no rotational force put onto this part, meaning that shear and 

other rotational stresses didn’t have to be considered.  

Bicep Upper & Lower:  

The parts for the bicep were adapted for the comfort and ease of use while still being able to 

hold the full weight of the arm. While it wasn’t likely that the entire weight of someone’s arm 

would be resting on one of the pieces, this was considered an extreme circumstance, with 

factors of safety being considered as well. The area for these parts was more complex to 

calculate due to their distinct “C-shaped” design. In addition, we decided to assume that the 

dispersion of the forces is uniform across the surface or the “horseshoe” element of the part. 

In contrast, the actual forces will be higher at the centre and less concentrated at the edges 

due to the nature of the design.   

 

Figure 20 - Bicep Clamp 
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The upper Bicep is a broader part to allow the upper bicep to fit through it quickly. As well as 

the measurements shown in the figure above, the part has a depth of 20mm, providing a 

suitable surface area for the arm to rest on. The highest possible stress can be represented by 

a rectangular load of 4 kg (39.2 N) across the thinnest point of the structure, which is 20mm 

thick. We assume that the contact parallel to the arm only represents 5mm, which could be an 

underestimation for safety reasons, as a more spread load could lead to a false safe result. 

This also represents the weakest point of the lower bicep piece, which has a very similar 

design. This was testing the parts at 50% infill to see if print time can be reduced as well as 

material usage without ramifications on the part stability.   

Calculate the Area where the force is acting:  

  

Work out compressive stress:  

  

Work out the max compressive strength for 50% infill (Given compressive strength of PLA at 

100% infill is 65 GPa):  

  

Therefore, the predicted compressive strength for the part is far below the material's breaking 

point and can thus be printed at lower infill densities. Also, considering that it is unlikely for 

the entire weight of the arm to rest on one-part, large cutbacks can be made from this and 

other parts of the arm.  

Elbow Plates  

The elbow plates proved challenging from a design standpoint as they considered a wide 

range of stresses during operation. The primary stress that had to be considered for this part 

was bending stress, as there needed to be limited contact points across the elbow to facilitate 

movement from the servo. This, however, causes high point loads at those contact points, 

resulting in high momentary forces across the part. Because of this, it was immediately 

apparent that this would have to be a higher infill part due to the bending stress alone.  

Another stress to consider is the axial stress caused by the lower arm wanting to pull the 

structure away from the bicep section of the system. This had less of an effect on the 

structural integrity than the bending stress. However, it was still higher than initially 

expected. There is also a high amount of shear stress going through the part's cross section 

due to the servo's rotating motion and the bicep parts wanting to pull the part up while the 

lower arm is acting with gravity to pull the structure down.  

Strain should also be considered for this part, as it could cause it to deform over time, leading 

to a change in shape or potential breakdown later on.   

This is the part that would have to be replaced the most frequently in real-world use, as it is 

essential to the structure itself while also facilitating movement, which will wear the part 

more quickly than the stationary parts found elsewhere in the system.  
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Figure 21 - Elbow Plate 

The part is designed to be broad with multiple points of contact on each connection to ensure 

that there isn’t an unreasonable amount of wear on a particular connection. The depth of the 

part is 5mm, meaning there could be potential for tension to cause bending in high-stress 

areas. This particular connection is holding the servo, which is articulating the elbow joint, 

which is held in the gap left in the middle of the part, which may cause it to be less prone to 

breaking than the other part due to weight distribution.  

Finding the Bending Stress of the Elbow Plate:  

  

Where:  

M = bending moment  

y = distance from neutral axis  

I = second moment of area  

Calculate the bending moments (when taking the neutral point as 10mm from the centre of 

the connections, assuming half an arm's weight is on each connection) (weight of a 35Kgcm 

servo is 3.4N):  
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Calculate the moment of Inertia for the rectangular section:  

  

Calculate the bending stresses:  

  

  

Therefore, the elbow plate's design has significantly reduced the likelihood of it being bent to 

the point of deforming or breaking. The elongated design in the vertical direction 

significantly reduced the stress on the cross-sectional area of this part, resulting in the stresses 

being reduced to near-negligible levels. Also, there are two of these pieces, one on either side 

of the arm, resulting in even more stability.  

Overall, this analysis, whether fully fleshed out or just roughly worked out on paper, allowed 

us to understand how the parts would behave before printing. In addition, it could warn us 

about parts that could potentially fail ahead of time, meaning that we could hold back a print, 

saving time and resources. When print times can potentially exceed multiple days, this was a 

effective way of testing designs.  
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Iterations and Problems 

Most of the problems arose in the fabrication and assembly of the system.   

A common recurring issue was that parts would print with the walls under-extruded and not 

fully attached to the part, only at the corners. This issue was fixed by changing the 

temperature of the printer's nozzle and increasing the flow rate. This, along with the most 

reliable printer, allowed parts to be consistently printed at the desired quality to ensure 

reliability with the system.  

  

The second major issue was the available hardware. The initial servos were stronger than 

those used in the final implementation. However, they didn't come without their own quirks 

and learning experiences. They remembered the final position they were in when they lost 

power. However, they also assumed they hadn’t moved between then and being turned on. 

This memory then limited the servo to 180 degrees as specified in the data sheet [Appendix D 

– DS3240 Servo Datasheet] however they also adjusted where the limit of the angles was 

relative to the angle they thought they were at, not based on a true specified data point or 

encoder. This meant that if the arm was powered off at full flexion and then turned on flat, 

when told to go straight, it would power past that point and go to the specified angle as it had 

no knowledge of the angle being reflexive instead of where we as people wanted it to go.  

Once we knew this was how the servos worked, we switched to some other ones with limited 

angles that return to a fixed position for a given angle rather than scaling angles based on 

where they thought they were from their memory. This made not only designing but also 

testing to check for elements needing iteration and modification, as positions were then 

consistent.  

  

After solving these significant issues, iterations came as adapting parts to meet strength 

criteria to withstand forces, as parts showed flex and deformation when under a load with 

resistance from the human arm.   

These iterations included adding thickness and changing infill of the parts where points of 

failure were shown to be, mainly where layer lines and fasteners had concentrated the effects 

of forces acting upon them.  

A prime example of this type of iteration was the bicep brace, as the infill around one of the 

heat-sunk threaded inserts gave way under a load-bearing test using the servo while the 

device was being worn. This was a test aimed at seeing whether the servo could move the 

arm as it stood, but the bicep brace flexed where the servo bracket wings were, and the group 

heard an audible crack. This was fixed within the day as it was an increase of infill from 30% 

to 50% and the thickness of the parts and number of walls was increased at the points of and 

around the failure point.  

  

When testing the infill strength of parts, we used the smallest and thinnest part—the wrist 

linkage bar—to test strength. Having tested an earlier iteration of the bicep brace, it showed 

no external failure under 10kg of load; however, the linkage bar dubbed “type I” for testing 

purposes yielded to breaking at 10kg.  

For testing we used “types” of bars of “I - VII” and testing discussed in a following section 

will further explain this; leading to the thought processes of upping infill for parts mentioned 

prior to be implemented.  
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Later iterations also included changing the wrist collar to have a slot for a belt, which was 

quickly dismissed after viability of moving it with such a mechanism was deemed too 

advanced for the available time with the lack of resources we had. Instead of this, we opted to 

use the rigid bar and just push and pull the collar within a limited range as can be seen in the 

final design.  

Realisation of the Mechanical Design and Orthographic Views 

The exoskeleton was developed as a semi-modular system to bring the design to life. This 

modularity was central to both the assembly process and future adaptability, allowing parts to 

be easily replaced, upgraded, or adjusted without reconstructing the entire system. The 

various sections were designed to connect using standardised mounting holes and were 

physically connected using M3 fasteners and, where possible, heat-sunk threaded inserts. In 

areas where mechanical fastening was impractical or felt insufficient, hot glue was selectively 

used as to provide structural reinforcement or positional stability. Engineering drawings for 

measurements and parts not discussed explicitly can be found in [Appendix A – Engineering 

Drawings] 
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Figure 22 - Isometric view of entire system 

The structural elements of the system were entirely fabricated using FDM 3D printing. 

Components that could not be 3d printed - such as servos and limit switches- were sourced as 

off-the-shelf hardware. Other non-printed elements, like the interfaces for mounting to a 

user's arm, were made by hand using craft foam.  
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Figure 23 - Upper Bicep Cup Foam 

This hybrid approach, combining printed and non-printed elements, allowed the system to 

meet its mechanical and ergonomic requirements while remaining accessible and easily 

manufacturable with the tools and materials available to the team.  

When considering parts such as the forearm brace, printing orientation and making the part as 

long as possible was important. Despite the necessity of staying within the size limitations, 

reducing the number of breaks within a section helps reduce possible undesired movement as 

parts are then connected to the lowest possible number of other parts in a row when 

facilitating the required length to meet the requirements for forearm length. Having the wrist 

mechanism on a single large piece and then building off from it also maintains the thought 

process of keeping minimal parts that shouldn’t move separately as one. As the rotation 

mechanism required iteration, the mounting to the rest of the frame could be tightened to 

allow consistency when testing each change to find a system that worked reliably. This 

became especially poignant when testing the limit switch placements, as these required the 

correct spacing to actuate reliably before rotation too far became an issue without ending 

travel prematurely.  
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Figure 24 - Isometric View of Forearm Brace 

 

Figure 25 - Isometric View of Wrist Mechanism Mount 
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Above the elbow was a combination of the bicep cups and the bicep brace. These parts are 

the system's root, mounting the rest of the system to the user. These parts were printed in 

differing orientations when compared to each due to their sizing and required use orientation. 

Since the bicep brace takes a lot of the forces applied due to the user and system, it was 

important to ensure that the weight of everything that it precedes was not applied 

perpendicular to layers, as the part is thinnest in its axial direction going down the back of the 

bicep. Instead, it is pulled parallel to the layer lines, meaning that any axial load would pull 

along the layer lines, having an increased surface area across each layer to prevent shearing 

along them.  

The cups were printed with the “C” shape flat on the bed. Despite this putting the force 

exerted by the fasteners under load perpendicular to the layer lines, it allowed the curvature 

of the cups to be more rounded, as printing these in the same “C” orientation as the forearm 

brace would make them appear “stepped” due to the layers, especially at the centre of the 

curve.  
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Figure 26 - Difference between print layer orientations 
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Figure 27 - Bicep Cups Design Iterations 
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Figure 28 - Isometric View of Bicep Brace 
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Justification of Final Design 

When finalising the design, many final decisions were made, and reasons for the design 

choices were given.  

  

Firstly, given the testing of various parts by casual, accidental, and deliberate means, the infill 

of parts between 25% and 50% for any major parts and the infill of the smaller parts ranging 

even further up to 85% (due to the lack of noticeable benefit from higher percentages) is 

justifiable for a range of reasons.   

It has made the parts durable, and the oldest parts that remain in use on the final construction, 

even when put under a duration of continuous operation, have withstood the use and testing 

over time. This was an accidental test caused by a script Leo made for the video to have it 

move for some of the shots. During this accidental stress test, we found that the shaking for 

around an hour of use without someone using it to dampen the vibration and moderate 

changes in angular velocity loosened and, in one case, fully unscrewed nuts and bolts. This is 

partly because the nuts were not tightened to a fixed and tested torque value and were 

primarily done by hand with a socket and hex key to be easily disassembled again for repairs 

or alterations over the development period.  

  

The servo directly interfacing with the elbow actuation allows for simple and effective 

angular control. However, it also means that the weight felt by it due to a user's arm and the 

system itself was all on one servo. This was done to keep the design as simple as possible to 

showcase the technical capability of the over-arching concept of the control mechanism 

rather than perfect overall operation due to the prototype nature of the project. This same 

concept of it being a technical showcase is also justifying the wrist rotation servo, only 

enacting a function of rotating approximately 45 degrees, as it shows the function and control 

without over-complicating the mechanical aspects of working with an angle-limited servo for 

a large rotational motion adjacent to its placement to the collar.  

  

The use of curved crutch-style cups padded with foam was decided upon due to the 

availability of materials facilitated by what could be acquired from our own and the 

supervisors’ available resources. This allowed the parts in contact with body parts to be more 

comfortable and ergonomic since it isn't hard plastic rubbing on skin or digging in. This is a 

fast, simple and effective method of accomplishing the minimum requirements for a 

prototype. However, it allows for future iterations to build upon this if desired, where a better 

attachment method than hot glue and foam tape could be implemented, possibly with a more 

comfortable foam and a fabric cover.  

Testing 

When testing the strength of the parts, a range of dedicated and group tests were conducted, 

varying in scientific capacity. The most detailed of these was the strength testing of the wrist 

linkage bars—specifically, the seven different types previously mentioned.  

To carry out these tests, we used luggage scales to measure the load applied, which is why the 

results are recorded in kilograms. Although not ideal, this method was chosen due to the lack 

of suitable calibrated weights to hang from the parts for a truly scientific test. The scales were 

pulled manually until the breaking point was reached, introducing some imprecision but still 

offering usable comparative data.  
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Initial testing was focused on determining the breaking point of the earliest bar prototype 

following material test one (M-T01) as described in the M-T series, later referred to as "type 

I." The peg section, which slots into the wrist collar, consistently failed at or below 1kg of 

load, a result that repeated across all other variants regardless of changes to infill percentage 

or pattern, meaning that a concise result was not acquired. This indicated that the peg’s 

inherent geometry, rather than its internal structure, was the primary point of failure, failing 

above the chamfered base, yet not shearing directly on layer lines as expected. For the main 

body of the bar, “type I” showed a breaking point of approximately 10kg. This established a 

rough upper limit for the bar designs and helped to define their mechanical boundaries. 

However, the sudden snapping of parts during this testing posed a risk to both the tester and 

the equipment, so later tests avoided complete destructive testing when the expected results 

were already reasonably well understood.  

Subsequent testing employed a measured bend test. Testing was not able to simulate the axial 

loading the part would experience in use, as we lacked equipment capable of applying a 

load along the length of the bar and in line with the print layers. Instead, the bending test 

applied force perpendicular to the layer lines, which is not the primary direction of stress 

during normal operation.  

Due to the essential nature of the test setup and variability in print quality, the data collected 

should be seen as indicative rather than definitive. Print inconsistencies, manual measurement 

error, and the non-standard method of load application all contribute to a significant margin 

of error in the results.  

One precise observation from these tests was that for small parts of this kind, variations in 

infill percentage had a minimal effect on overall strength, at least when using the same 

internal pattern at high infill densities. This suggests that for certain design elements, 

especially those prone to higher stress, shape and wall count play a large role in mechanical 

performance that infill density alone cannot match. A lot of this strength and lack of 

differences shown will be due to all having the same number of walls, and top and bottom 

layers.  

Each type had the following specifications:  

• I - 85% gyroid  

• II – 85% cubic  

• III – 60% gyroid  

• IV – 60% cubic  

• V – 60% lines  

• VI – 85% gyroid, ½ speed  

• VII – 100% gyroid  
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Table of bending under load in mm  

Type  1kg load  3kg load  5kg load  7kg load  

I 85% gyroid  5  14  27  38  

4  15  28  40  

II 85% cubic  5  14  24  38  

5  12  25  36  

III 60% gyroid  6  20  27  33  

6  22  29  32  

IV 60% cubic  6  19  26  37  

7  18  25  36  

V 60% lines  7  17  25  40  

7  19  21  42  

VI 85% gyroid, ½ speed  4  14  25  36  

4  15  28  39  

VII 100% gyroid  3  14  26  35  

4  14  27  33  
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Some of the other testing came from having either old versions or spare parts that could be 

tested without detriment to development. This testing was helpful as it allowed elements that 

had remained unchanged between iterations, such as the main frame of the bicep brace, to be 

tested. This allowed us to test that element of the design while developing the other sections, 

and allowed for simultaneous design, fabrication and evaluation when appropriate.  

During a partial systems test, we found that under a 10kg load, although there were cracking 

noises, it was suitable for use and inclusion in the design unchanged, as it exceeded 

the expected loading by the group for the prototype. During a systems check, it was also 

observed, as previously mentioned in the iterations section, that the left servo wing failed 

after a slight modification to one of the angles, yet the main body of the brace itself remained 

strong.  

  

Following previous stages, test two (M-T02) yielded positive results for most components, 

indicating that friction did not pose a significant issue throughout the system. However, one 

exception was the main wrist collar, which required a slight adjustment. Due to the inherent 

imperfections in 3d-printed circular geometry, some play was necessary to ensure functional, 

reliable movement despite exporting STL files with high-resolution settings optimised for 

round features.  

Figure 29 - Type I bar break 
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While lubrication was considered as a solution, allowing for minor clearance between mating 

parts ultimately proved more effective. This tolerance gave the wrist collar just enough 

freedom to rotate smoothly between the upper and lower bracket mounts without 

compromising positional stability. The part remained reliably seated during operation while 

maintaining its ability to move freely.  

Material tests three and four (M-T03, M-T04) also passed successfully. During live 

demonstration, testing, and filming, the exoskeleton arm was worn and actuated with 

functional actuation for both elbow flexion and wrist movement. The system stayed securely 

in place on the user throughout the activity, confirming the validity of mounting elements 

under real-world conditions with the Velcro straps. 

 

Electronic 

This section outlines the electronic components and control logic used to drive the 

exoskeleton. It details how microcontrollers, sensors and power system were integrated to 

enable reliable, safe and responsive actuation 

Approach 

The electronics subsystem was designed to be modular, robust, and adaptable to ongoing 

design changes. It began with identifying the critical components required for safe and 

responsive actuation—servos, sensors, controllers, and power regulation—and arranging 

them in a way that allowed for iterative development and straightforward debugging. 

At the heart of the system are three Arduino Uno boards, each handling a specific role: motor 

control via PWM, current monitoring with the INA266 sensor, and digital input processing 

from limit switches and emergency stop mechanisms. This decentralised approach offloaded 

low-level tasks from the Jetson Nano, which instead manages higher-level logic and wireless 

communication via MQTT. 

Power was a central concern from the outset. To ensure stable operation, two 12V 6A 

batteries were used in parallel, feeding into a regulated power distribution setup. This 

configuration not only supported the servos' high torque demands but also allowed sufficient 

headroom for current spikes during rapid motion. Each servo line is protected against 

overcurrent events, with fail safe triggered both in software and through inline hardware 

mechanisms. 

Wiring was kept as clean and maintainable as possible. Dupont jumper wires were avoided 

for high-load connections, replaced with soldered joints and secure terminal blocks where 

necessary. Serial communication between the Jetson Nano and each Arduino allowed reliable 

data exchange, while USB connections simplified both power delivery and debugging. 

A primary focus was on ensuring that one subsystem's faults would not propagate to others. 

This was achieved by isolating power rails, using individual fuses, and monitoring system 

health continuously through telemetry data received from the INA266 and limit switch 

triggers. 

The electronic layout evolved throughout the project as reliability issues emerged—

particularly regarding I2C instability and early power delivery failures. Lessons from these 
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setbacks led to a more fault-tolerant design, with redundant safety layers and extensive 

logging via Node-RED and MQTT to allow for quick issue identification and resolution. 

Every component—from relays and limit switches to servo headers—was tested in isolation 

before being integrated into the system. This strategy ensured that when errors did arise 

during full-system tests, they could be traced with minimal debugging overhead. 

Iterations and Problems 

The electronics subsystem underwent several iterations as the system evolved, and reliability 

issues surfaced during testing. Early designs relied heavily on the Jetson Nano for both 

processing and I2C communication, but persistent instability—particularly with I2C buses 

and peripheral interference—led to a shift toward decentralised control using three Arduino 

Unos. This change improved responsiveness and made debugging individual subsystems 

significantly easier. 

One of the first challenges was voltage drop across long power lines, which caused 

intermittent servo resets under high load. This was mitigated by switching to thicker gauge 

wires and relocating power distribution closer to the load points. Similarly, early versions 

used off-the-shelf jumper wires, which often failed under vibration or torque; these were later 

replaced with soldered joints and screw terminals for reliability. 

Power delivery itself posed a number of issues. In the initial prototype, all components shared 

a single rail without adequate current sensing or isolation. This led to system-wide brownouts 

when servos stalled. The introduction of individual INA266 current sensors and inline fusing 

helped isolate faults and prevent cascading failures. Combined with software logging over 

MQTT, these changes allowed for quicker identification of unsafe operating conditions. 

The USB serial connection between the Jetson Nano and Arduinos also proved problematic in 

early tests, particularly when multiple devices attempted simultaneous communication. A 

structured messaging protocol and staggered polling intervals were introduced to prevent data 

collisions and ensure that sensor readings remained consistent across test cycles. 

These iterative changes were driven by real-world testing and often revealed edge cases not 

caught during isolated component testing. While each revision introduced its own set of new 

issues, the end result was a robust control system that could be debugged quickly, modified 

easily, and scaled if necessary. 
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This system diagram illustrates the full communication architecture of the exoskeleton 

control pipeline. EEG data is captured by the Emotiv Epoch X headset and sent to a 

Windows system, where it is processed and translated into action commands via Node-RED. 

These commands are formatted as JSON and transmitted to the Jetson Nano, which serves as 

the central control unit. The Nano distributes control instructions to three dedicated Arduino 

boards: 

• Arduino 1 receives servo angle commands and controls the PCA9685, which in turn 

drives the servo motors. 

• Arduino 2 monitors the state of limit switches and sends digital HIGH/LOW signals 

to indicate whether physical movement boundaries have been reached. 

• Arduino 3 reads real-time current values from two INA266 sensors to monitor power 

draw. 

All status data from Arduinos 2 and 3 are sent back to the Jetson Nano, which uses this 

information to make safety decisions and can engage or disengage a physical relay that 

powers the system. The result is a modular, fault-tolerant architecture that allows real-time 

feedback, EEG control, and safe actuation of the exoskeleton. 

 

Figure 30 - Data Flow 
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Schematics and Circuit Diagrams 

This diagram shows the wiring configuration for four mechanical limit switches (LS1–LS4) 

connected to an Arduino Uno designated as /dev/arduino_limits. The switches are used to 

detect end-of-range conditions in the exoskeleton’s joints and enhance user safety. LS1 and 

LS2 are wired in parallel to digital pin D4, acting as redundant triggers for one axis (e.g. 

elbow flexion), while LS3 and LS4 are connected to pins D5 and D6 respectively, monitoring 

a second axis (e.g. wrist rotation). All switches share a common ground, ensuring consistent 

reference voltage. In the software, the Arduino uses internal pull-up resistors and monitors for 

pin state changes—when a switch is pressed, the pin reads LOW. This event is sent over 

serial to the Jetson Nano, where it can be interpreted by safety scripts to stop or reverse motor 

movement immediately. This setup provides a simple, reliable mechanism to enforce 

mechanical limits without the need for analog sensing or external logic. 

 

 

 

 

 

 

Figure 31 - Limit Switch Arduino Wiring Diagram 
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This diagram illustrates the current sensing setup using two INA226 modules connected to 

an Arduino Uno, referenced in software as /dev/arduino_ina. Each INA226 module monitors 

the current drawn by a pair of servo motors—Servo 0 & 1 and Servo 2 & 3—providing real-

time current feedback to enhance safety and system diagnostics. The modules communicate 

with the Arduino via the I²C bus, using shared SDA and SCL lines connected to A4 and A5 

on the Arduino. Each INA226 module is powered through the 5V and GND rails, and is 

placed in-line with the servo power supply to measure voltage and current directly across the 

shunt resistor. The analog inputs (IN+ / IN-) are connected in series with the servo power 

lines to enable precise sensing of load conditions. In software, the Arduino continuously 

reads current values from each module and transmits this data to the Jetson Nano via serial. 

These readings are used to detect overcurrent events and support real-time monitoring, 

allowing the control system to trigger power cut-offs or emergency stop routines if abnormal 

current draw is detected. 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 - INA Arduino Wiring Diagram 
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This diagram shows the servo control setup using a PCA9685 16-channel PWM driver 

connected to an Arduino Uno, referenced in the system as /dev/arduino_pca. The PCA9685 

receives control signals via I²C communication, with SDA (A4) and SCL (A5) connected to 

the Arduino. It is powered from the 5V rail and grounded alongside the Arduino to maintain a 

common reference. The PWM outputs from the PCA9685 are routed to four servos (Servo 0–

3), with their signal wires (yellow) connected to channels PWM0–PWM3 respectively. 

Each servo receives PWM control from the PCA9685 while sharing a common power (red) 

and ground (black) line. The PCA9685 offloads the timing-intensive task of generating 

PWM signals, enabling smooth and simultaneous actuation of multiple servos without 

overloading the Arduino’s internal timers. This configuration supports real-time motion 

control, with the Arduino forwarding angle commands from the Jetson Nano to the PCA9685 

over I²C. To prevent missed signals during startup, a handshake mechanism is implemented: 

the Arduino sends an "ACK" message after its setup routine is complete, ensuring that the 

Jetson only begins communication once the system is ready. This design improves stability, 

especially in complex boot sequences and multi-script deployments. 

 

 

 

Figure 33 - PCA Arduino Wiring Diagram 
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Figure 34 - Full Wiring Diagram 
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Justification of Final Design 

The final electronic layout was driven by the need for modularity, fault isolation, and reliable 

performance under real-world conditions. While the original plan aimed for a more 

centralised system using the Jetson Nano for all control and processing, repeated 

communication errors, power inconsistencies, and debugging challenges made that approach 

unfeasible. Delegating low-level tasks to dedicated Arduino Unos allowed for cleaner 

separation of responsibilities, reduced wiring complexity, and simplified troubleshooting. 

This decentralised architecture was particularly valuable in ensuring each subsystem—PWM 

control, current monitoring, and limit switch logic—could operate independently and be 

tested in isolation. The USB serial links provided a reliable communication method with the 

Jetson Nano, which now handled high-level decision-making and external MQTT messaging. 

This setup proved effective in both bench tests and live demonstrations, with individual faults 

no longer causing total system failure. 

Using dual 12V 6A batteries ensured sufficient current headroom for the high-torque servos 

and eliminated brownouts observed during earlier testing phases. The addition of INA266 

sensors allowed for real-time current monitoring, improving safety and offering critical 

feedback during load testing. Safety was further reinforced with physical relays for 

emergency stop functionality, inline fuses, and software-triggered shutdowns that could cut 

power instantly in the event of an overcurrent or system hang. 

Soldered joints replaced all high-load or vibration-sensitive connections to minimise signal 

loss and physical disconnection. All PCB-less wiring was routed with strain relief in mind, 

using screw terminals, heat shrink, and zip ties to maintain order and reduce wear during 

extended testing periods. 

Overall, the final design balances reliability, modularity, and real-world usability. While more 

compact or integrated systems are feasible with advanced PCBs or embedded solutions, the 

chosen approach prioritised accessibility, rapid iteration, and maintainability—key factors in 

a team-led, proof-of-concept build. 
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Software 

This section details the software architecture and tools used to control the exoskeleton, 

interpret EEG signals, and manage communication between system components. The 

software was developed with modularity, fault tolerance and ease of debugging, using Python 

scripts, Node-RED flows and MQTT messaging. 

Approach 

The software was designed to bridge multiple hardware layers flexibly and resiliently. Rather 

than relying on a single monolithic application, the system was broken into smaller, purpose-

built Python scripts—each handling a dedicated function such as servo control, EEG 

command interpretation, or current monitoring. This modular approach allowed for faster 

debugging, easier updates, and improved fault isolation across the project’s lifespan. 

At the system's core was a lightweight communication framework built on MQTT. MQTT 

topics were routed messages between the EEG input, control scripts, and safety mechanisms. 

The broker was hosted in a Docker container on a Windows laptop, ensuring compatibility 

and isolation from the host environment. Node-RED served as both a flow-based 

development tool and a user interface, providing a clear visual overview of signal routing and 

system state. 

EEG signal data was processed using Emotiv’s cloud services, which provided structured 

JSON outputs in response to trained mental commands. These outputs were subscribed to via 

Node-RED and relayed through MQTT to the Jetson Nano, triggering corresponding motor 

commands. By using this pipeline, the team avoided the need for local signal processing—

reducing computational load on the Jetson Nano and simplifying the development stack. 

Due to instability and delays in setting up ROS and Gazebo, a decision was made early in 

development to drop the ROS-based control layer entirely. Instead, the system adopted a 

lightweight custom alternative using MQTT and Python, which allowed faster iteration and 

fewer compatibility issues. This trade-off proved effective for a prototype-level project, 

where flexibility and reliability were more important than long-term scalability or ROS-

native features. 

Each script was developed to run independently and report its status through MQTT topics, 

making it easier to isolate faults or run subsystems in simulation if needed. For example, the 

servo controller could be tested with mock EEG messages, or the current sensor could be 

monitored in real time using a separate logging script. This structure also allowed easy 

extension of features without rewriting the whole system. 

The software stack included minimal dependencies to maintain portability. Python was 

selected as the primary language due to its extensive library support, readability, and 

compatibility with both Jetson Nano and Windows environments. Supporting tools such as 

Docker, Mosquitto, Node-RED, and PowerShell scripts were all chosen to streamline system 

deployment, testing, and monitoring. 

Ultimately, the software was designed not just to function but also to be understandable, 

adaptable, and recoverable. These priorities shaped the system's structure and helped ensure it 

remained operable throughout iterative hardware changes and evolving requirements. 
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Iterations and Problems 

A major challenge in the software development process was the unpredictable reassignment 

of serial ports for the Arduinos connected to the Jetson Nano. Each time the system rebooted 

or an Arduino was unplugged and reconnected, Linux dynamically assigned it a different 

device path (e.g. /dev/ttyACM0, /dev/ttyACM1, etc.). This caused significant issues for the 

modular Python scripts, which required consistent communication with specific Arduinos 

responsible for motor control, current sensing, and limit switch handling. 

Initially, port assignments had to be manually updated in each script before launch. However, 

this quickly became error-prone and time-consuming—especially as incorrect assignments 

often led to silent failures, such as the wrong Arduino being sent PWM commands or sensor 

data being misread. To resolve this, we implemented a permanent fix using udev rules. By 

identifying each Arduino’s unique serial number using udevadm info, we created persistent 

symbolic links such as /dev/arduino_pca, /dev/arduino_current, and /dev/arduino_limits. 

These symlinks acted as reliable placeholders in all scripts, ensuring consistent behaviour 

regardless of device order or boot timing. 

Another critical issue emerged from the Arduino handling the PCA9685 board. Due to slight 

startup delays and inconsistent boot times, the main Python script would sometimes begin 

transmitting commands before the Arduino was fully ready to receive them. This resulted in 

dropped messages and delayed servo actuation during system startup. To mitigate this, we 

implemented a custom handshake protocol between the main script and the PCA Arduino. 

At startup, the Python script waits for a specific "ACK" message from the Arduino over serial 

before sending any PWM commands. This ensures the Arduino has completed its setup 

routine and is actively listening. Conversely, the Arduino remains in a passive state until it 

sends the acknowledgment, preventing it from missing the first command. This small 

addition proved highly effective in improving reliability, especially during repeated system 

tests where power cycling was frequent. 

Other software issues included occasional serial buffer overruns and inconsistent data parsing 

when too many messages were sent in rapid succession. These were addressed by rate-

limiting serial writes, flushing buffers before read cycles, and introducing short delays 

between message transmissions. The modular structure of the software also made debugging 

more manageable, as individual scripts could be run and monitored in isolation to pinpoint 

faults. 

Overall, these iterations significantly improved system robustness. What began as a loosely 

connected set of scripts matured into a coordinated, resilient control system with clear 

communication pathways, startup synchronisation, and fault tolerance—all essential for real-

world operation of the exoskeleton. 

Justification of Final Design 

The final software architecture was intentionally built around simplicity, modularity, and fault 

tolerance—key traits for a prototype system where hardware and requirements evolved 

frequently. Rather than relying on a monolithic framework like ROS, which introduced 

delays and compatibility issues, the team opted for lightweight Python scripts communicating 

over MQTT. This choice allowed faster development, easier debugging, and greater 

flexibility in integrating or isolating subsystems during testing. 
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By structuring each software component as an independent script—handling servo control, 

EEG interpretation, or sensor monitoring—errors in one area did not compromise the entire 

system. This was essential for iterative development and real-time testing, where subsystems 

could be swapped or restarted without halting the overall workflow. Node-RED provided an 

accessible interface for monitoring system state and routing messages, making the control 

logic more transparent and adaptable. 

The decision to use Emotiv’s cloud-based EEG processing simplified signal handling and 

reduced the computational load on the Jetson Nano. Instead of building a custom signal 

processing pipeline locally, the team focused on interpreting already-processed commands, 

which allowed greater emphasis on system integration and reliability. This trade-off also 

reduced potential technical debt and avoided the complexity of working with proprietary 

EEG data formats. 

Persistent symlinks for serial communication were another critical design decision. They 

ensured that each Arduino could be referenced reliably by name—such as 

/dev/arduino_pca—regardless of USB enumeration order. This was especially important for 

scripts running on boot or in timed sequences, where incorrect device assignment could cause 

unpredictable behaviour. Combined with a startup handshake protocol, these symlinks helped 

establish a more deterministic and repeatable system state at runtime. 

Finally, the lightweight, decoupled nature of the software stack aligned with the project’s 

overall goals: to demonstrate EEG-based control of a wearable exoskeleton using accessible, 

open tools. While not optimised for scalability or embedded efficiency, the final design was 

stable, understandable, and maintainable meeting its core requirements for real-world testing 

and demonstration. 

Node-RED 

When setting up the Node-RED flows for EEG-based control, a couple of node palettes had 

to be installed to enable functionality. Among these, the Emotiv-BCI nodes were critical for 

interfacing with the Emotiv headset, while the dashboard 1.0 palette allowed for real-time 

monitoring and visualisation of system states and command outputs. These tools were 

fundamental to creating a control and monitoring interface; allowing observing of the 

system’s users’ control signals without needing to rely on watching Emotiv Suite directly all 

the time.  

The flow design underwent numerous iterations throughout the development cycle. Initially, 

the objective was simply to establish communication with the headset and begin receiving 

data within the Node-RED environment. This early stage was exploratory, helping us 

understand the structure and characteristics of the data being streamed from Emotiv’s Cortex 

API, and what processing would be necessary before transmitting control signals to the 

exoskeleton over MQTT.  

One of the first improvements was the inclusion of function nodes to filter and format 

incoming data. Emotiv's API, in its free tier, limits user access to only trained mental 

commands - delivered as intensity values on a 0 to 100 scale. These commands had to be 

thresholded to prevent false positives and misfires. A script was implemented to parse 

incoming payloads and apply conditional logic: if the intensity exceeded a predefined 
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threshold, a corresponding command such as "lift" was passed forward; otherwise, a "none" 

command was issued.  

This filtering was essential not only for accuracy but also to mitigate a soon to be known 

Node-RED quirk: even if a script doesn’t explicitly return an output, unhandled data can still 

propagate through the flow. Without returning "none", stray messages - in the form of zeroes 

- were transmitted, leading to possible confusion for an unexpected input and no way to 

handle it cleanly. Including the explicit “none” command ensured consistent, intentional 

communication over MQTT as we had a known message to ignore.  

After processing, the cleaned command data was transmitted over MQTT, where the Jetson 

Nano subscribed to the appropriate topics and used these commands to actuate servos in the 

exoskeleton.  

Working with Emotiv’s Cortex API introduced several technical challenges. A particularly 

persistent issue was that the Emotiv suite software had to be launched before starting Node-

RED - failing to do so would cause WebSocket connection errors, with the API being marked 

as "busy" or not attempting to connect at all. Additionally, a later update to Emotiv’s license 

agreement broke compatibility with containerised environments, meaning that our Node-RED 

instance, which had previously been deployed via Docker, now failed to connect. The 

workaround was to run Node-RED natively on the host machine, rather than within a 

container, while continuing to run Mosquitto in Docker.  

Once the connectivity issues were resolved, final improvements could be made to the Node-

RED dashboard. These included enhancements to usability and user feedback, such as 

displaying the last sent command and its intensity in textual form and switching from static 

gauges to real-time graphs. This provided a more informative overview of cognitive activity, 

allowing the user or an observer to see fluctuations in thought strength and control quality 

without having to monitor the Emotiv software directly.  

The dashboard was also designed with safety and user control in mind. A pair of buttons were 

added to control a software-based emergency stop (E-Stop). These acted as toggles, emitting 

Boolean values on press. The visual design featured a large red button to engage the E-Stop 

and a green one to disengage it. Between these, a power indicator was placed, dynamically 

changing from green (active) to red (stopped) to clearly show the system’s state at a glance—

eliminating the need for the user to remember which button was pressed last.  
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Realisation of Evaluation of the Final Robotic 

System 
This section presents the final integrated prototype and assesses its meeting the project's 

original objectives. Based on real-world testing, it reflects on system performance, reliability, 

and usability, highlighting both the developed exoskeleton's successes and limitations. 

Software Realisation 

The software realisation focused on building a modular, lightweight, and fault-tolerant 

control system that reliably translates EEG commands into physical movement. The 

architecture was developed around a set of dedicated Python scripts that each handled 

specific tasks, such as receiving mental command signals, controlling servo positions, 

monitoring system current, and managing safety responses. These scripts communicated via 

MQTT topics, allowing each subsystem to operate independently while remaining 

synchronised through a shared messaging structure. 

Key to the software’s success was the decision to avoid using a full ROS-based stack. ROS 

introduced unnecessary complexity and compatibility issues during early testing, especially 

when simulation efforts with Gazebo stalled. Instead, MQTT and Node-RED provided a 

more accessible and stable alternative, allowing visual monitoring of signal flow and real-

time debugging during development. 

Each Arduino was addressed through persistent symlinks based on serial numbers, avoiding 

issues caused by dynamic USB enumeration. A handshake protocol was also added to ensure 

that the PCA9685 Arduino was fully initialised before accepting servo commands, addressing 

lag and missed messages during startup. 

The final software structure prioritised clarity and reliability. Components could be swapped 

or updated without affecting the overall system, supporting ongoing hardware changes and 

simplifying maintenance. This approach enabled smooth testing sessions, quick recovery 

from faults, and a clear demonstration of EEG-based actuation for rehabilitation use. 

Software Development 

The software development process was structured to support remote collaboration, rapid 

iteration, and seamless deployment across heterogeneous hardware. Development took place 

primarily on a Windows laptop, with remote access to the Jetson Nano—running the main 

control software—established via SSH. This enabled the team to manage code, monitor 

processes, and push updates without requiring direct interaction with the Jetson's desktop 

interface, which remained headless throughout the project. 

 

The team used Visual Studio Code in combination with the Remote - SSH extension, which 

allowed the Jetson Nano’s file system to be accessed as if it were local. This setup provided 

full IDE functionality—including syntax highlighting, Git integration, and terminal access—

while keeping execution and testing bound to the Jetson. It was especially helpful when 

debugging live systems, as logs could be streamed in real time while viewing or editing the 

code directly responsible. 
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Python was chosen as the primary development language for its simplicity, wide hardware 

support, and the availability of essential libraries such as paho-mqtt, pyserial, and json. Each 

component of the system—servo control, EEG command handling, safety logic, and current 

sensing—was developed as a standalone script. This modular approach allowed subsystems 

to be launched, stopped, and debugged independently, reducing interdependency and making 

it easier to isolate faults during testing. 

To manage communication between these components, the team implemented MQTT using 

the Mosquitto broker. The broker was hosted inside a Docker container on the Windows 

laptop, ensuring environment consistency and allowing the system to be brought up or 

restarted reliably. Other containerised services included the EEG interface (via Node-RED) 

and logging dashboards. This decision was made to avoid the complexity of cross-platform 

dependency issues, as containerising the services enabled reproducible environments across 

team machines. 

Node-RED was used not just for EEG signal routing, but also as a high-level visual 

debugging tool. It provided real-time status indicators and flow control, making it easier to 

track whether data was reaching its intended destination. In practice, this meant commands 

from the Emotiv system could be monitored in a clear, web-based UI before being passed to 

the Python control scripts. 

As development progressed, the team encountered recurring issues with Arduino device 

enumeration—specifically, that each board (connected via USB) would randomly be assigned 

paths such as /dev/ttyACM0, /dev/ttyACM1, etc. This inconsistency made automated scripts 

prone to failure, as the mapping between logical role and device path could shift between 

boots. To address this, we used udev rules to assign persistent symlinks to each Arduino 

based on its unique serial number. These were given intuitive names like /dev/arduino_pca, 

/dev/arduino_current, and /dev/arduino_limits, which were then referenced in the software. 

This guaranteed reliable connections to the correct microcontroller, regardless of connection 

order or timing. 

In addition, a serial handshake protocol was implemented specifically for the Arduino 

responsible for driving the PCA9685 servo controller. During initial tests, the Jetson script 

would begin sending commands before the Arduino had finished initialising, causing delays 

or missed instructions. To resolve this, the Arduino was programmed to send an "ACK" 

message once it was ready, and the Jetson’s Python script would wait for this signal before 

transmitting any commands. This simple but effective protocol ensured synchronisation 

between startup routines and improved overall system responsiveness. 

Version control was managed using Git, with local repositories kept on both the Jetson and 

the development laptop. Changes were synced via SSH, allowing branches to be tested safely 

before merging. This helped track changes over time and provided a recovery mechanism in 

the event of breaking updates. 

Altogether, the software development strategy focused on minimising friction between 

writing code and seeing it operate in real-world conditions. By leaning on remote tooling, 

containerisation, and modular design, the team maintained development velocity even as the 

hardware configuration and project scope evolved. This setup was instrumental in delivering 
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a working prototype that could reliably interpret EEG signals and perform real-time actuation 

under live test conditions. 

Important Code Extracts 

To ensure consistent serial communication with each Arduino, persistent device naming was 

implemented using udev rules. This process begins by plugging in the Arduino via USB and 

identifying its unique serial number using the command udevadm info -a -n /dev/<device> | 

grep '{serial}' | head -n 1. Once the serial number is obtained, a custom rules file (99-arduino-

names.rules) is created in /etc/udev/rules.d/, where each Arduino is assigned a symbolic link 

name (e.g. arduino_pca, arduino_ina, arduino_limits) based on its serial ID. These rules 

ensure that, regardless of the order in which Arduinos are connected or rebooted, each one is 

assigned a predictable path in /dev/. After saving the rules, they are reloaded and triggered 

using udevadm, and verification is done by listing the resulting symlinks with ls -l 

/dev/arduino_*. This setup eliminates ambiguity in device assignment and allows the main 

control scripts to reliably communicate with the correct microcontroller every time the 

system starts. 

To automate system startup and ensure all critical scripts launch on boot, a custom desktop 

autostart entry and a Bash script were used. A .desktop file was created in 

/home/<USER>/.config/autostart, which references a script (startup.sh) that sequentially 

opens terminal windows and executes each required Python module. This includes the scripts 

for controlling the PCA9685 (mqtt_PCA9685.py), current sensing (mqtt_INA226.py), limit 

switch monitoring (limits_serial_mqtt.py), the main logic controller (main.py), and the 

software emergency stop handler (soft_estop.py). Each command is launched in a new 

GNOME terminal instance with a small delay between them to avoid resource contention 

during initialisation. This method provides a simple, reliable way to automatically bring the 

entire exoskeleton control system online each time the Jetson Nano starts, supporting 

consistent operation without requiring manual intervention. 

# startup.sh 

#!/bin/bash 

 

# Navigate to the directory where your Python scripts are 

cd /home/jetson/exoskeleton 

 

# Launch each script in a new terminal window in order 

gnome-terminal -- bash -c "python3 mqtt_PCA9685.py; exec bash" 

sleep 1 

gnome-terminal -- bash -c "python3 mqtt_INA226.py; exec bash" 

sleep 1 

gnome-terminal -- bash -c "python3 limits_serial_mqtt.py; exec bash" 

sleep 1 

gnome-terminal -- bash -c "python3 main.py; exec bash" 

sleep 1 

gnome-terminal -- bash -c "python3 soft_estop.py; exec bash" 
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[Desktop Entry] 

Type=Application 

Exec=/home/jetson/exoskeleton/startup.sh 

Hidden=false 

NoDisplay=false 

X-GNOME-Autostart-enabled=true 

Name=Start Exoskeleton 

Comment=Starts all Python scripts at login, this file needs to be saved in 

/home/<USER>/.config/autostart 

INA226 Current Sensing 

This Arduino sketch interfaces with two INA226 current sensors over I²C to monitor the 

voltage and current drawn by the system’s servo power rails. Each sensor is calibrated for a 

0.1 Ω shunt resistor with a maximum expected current of 4.5 A, ensuring accurate readings 

without automatic range normalisation. In the main loop, the Arduino reads both voltage and 

current values from each INA226 module and outputs them over serial in structured JSON 

format. This data is read by the Jetson Nano via a Python script, then published over MQTT 

for real-time monitoring, overcurrent detection, and logging. The update rate is set to once 

per second, balancing responsiveness with communication overhead. 

#include <Wire.h> 

#include <INA226.h> 

 

INA226 ina1(0x40); 

INA226 ina2(0x41); 

 

void setup() { 

  Serial.begin(115200); 

  Wire.begin(); 

 

  ina1.begin(); 

  ina2.begin(); 

 

  // Calibrate both sensors for 0.1Ω shunt and 4.5A max expected current 

  // normalise = false ensures full range (no rounding) 

  int err1 = ina1.setMaxCurrentShunt(4.5, 0.1, false); 

  int err2 = ina2.setMaxCurrentShunt(4.5, 0.1, false); 

 

  if (err1 != INA226_ERR_NONE) { 

    Serial.print("INA1 Calibration Error: 0x"); 

    Serial.println(err1, HEX); 

  } 

  if (err2 != INA226_ERR_NONE) { 

    Serial.print("INA2 Calibration Error: 0x"); 
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    Serial.println(err2, HEX); 

  } 

} 

 

void loop() { 

  float v1 = ina1.getBusVoltage();      // V 

  float i1 = ina1.getCurrent();         // A 

 

  float v2 = ina2.getBusVoltage();      // V 

  float i2 = ina2.getCurrent();         // A 

 

  Serial.print("{\"ina1\": {\"voltage\": "); 

  Serial.print(v1, 3); 

  Serial.print(", \"current\": "); 

  Serial.print(i1, 3); 

  Serial.print("}, \"ina2\": {\"voltage\": "); 

  Serial.print(v2, 3); 

  Serial.print(", \"current\": "); 

  Serial.print(i2, 3); 

  Serial.println("}}"); 

 

  delay(1000); 

} 

 

 

Limit Switch Monitoring 

This sketch reads the state of four limit switches wired to digital pins 8–11 and sends their 

stable states over serial in JSON format every 50ms. Internal pull-up resistors are used, so 

each switch is active LOW when pressed. A simple software debounce mechanism filters out 

signal noise by requiring a 30ms stable reading before considering the switch state changed. 

The output JSON includes boolean values for LS1 through LS4, allowing the Jetson Nano to 

monitor joint boundaries and respond appropriately—such as stopping or reversing servo 

motion if a physical limit is reached. This approach ensures safety through continuous, low-

latency monitoring. 

 

const int switchPins[4] = {8, 9, 10, 11}; 

bool currentStates[4] = {false, false, false, false}; 

bool stableStates[4] = {false, false, false, false}; 

unsigned long lastReadTime[4] = {0, 0, 0, 0}; 

const int debounceDelay = 30;  // Minimum stable time in ms 

 

void setup() { 

  Serial.begin(115200); 

  for (int i = 0; i < 4; i++) { 

    pinMode(switchPins[i], INPUT_PULLUP); // Using internal pull-up resistors 

  } 

} 
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void loop() { 

  unsigned long now = millis(); 

 

  for (int i = 0; i < 4; i++) { 

    bool reading = digitalRead(switchPins[i]) == LOW;  // true if pressed 

 

    if (reading != currentStates[i]) { 

      // State changed – start debounce timer 

      lastReadTime[i] = now; 

      currentStates[i] = reading; 

    } 

 

    if ((now - lastReadTime[i]) > debounceDelay) { 

      // State stable – update 

      stableStates[i] = currentStates[i]; 

    } 

  } 

 

  // Send JSON output every 50ms 

  static unsigned long lastSend = 0; 

  if (now - lastSend > 50) { 

    Serial.print("{"); 

    Serial.print("\"LS1\":"); Serial.print(stableStates[0] ? "true" : 

"false"); Serial.print(","); 

    Serial.print("\"LS2\":"); Serial.print(stableStates[1] ? "true" : 

"false"); Serial.print(","); 

    Serial.print("\"LS3\":"); Serial.print(stableStates[2] ? "true" : 

"false"); Serial.print(","); 

    Serial.print("\"LS4\":"); Serial.print(stableStates[3] ? "true" : 

"false"); 

    Serial.println("}"); 

    lastSend = now; 

  } 

} 

 

 

PCA9685 Servo Control 

This sketch controls up to 16 servo channels using the PCA9685 PWM driver, 

communicating over I²C. The Arduino receives servo angle commands in JSON format via 

serial input (e.g., { "Servo0": 90 }), parses them using the ArduinoJson library, and maps the 

angles (0–180°) to corresponding PWM pulse widths (500–2500 µs). The servo pulses are 

then written to the appropriate channel on the PCA9685, enabling real-time control of 

multiple joints. The sketch includes feedback via the serial monitor to confirm each 

command, and serves as the core actuation interface in the exoskeleton’s modular control 

system. 
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#include <Wire.h> 

#include <Adafruit_PWMServoDriver.h> 

#include <ArduinoJson.h> 

 

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(0x40); 

 

// Servo pulse range 

const int SERVO_MIN = 102;  // ~500us 

const int SERVO_MAX = 512;  // ~2500us 

 

void setup() { 

  Serial.begin(115200); 

  Wire.begin(); 

  pwm.begin(); 

  pwm.setPWMFreq(50);  // Standard servo frequency 

  delay(10); 

} 

 

void loop() { 

  static String input; 

  while (Serial.available()) { 

    char c = Serial.read(); 

    if (c == '\n') { 

      processJson(input); 

      input = ""; 

    } else { 

      input += c; 

    } 

  } 

} 

 

void processJson(const String& jsonStr) { 

  StaticJsonDocument<128> doc; 

  DeserializationError err = deserializeJson(doc, jsonStr); 

  if (err) { 

    Serial.print("JSON parse error: "); 

    Serial.println(err.c_str()); 

    return; 

  } 

 

  for (JsonPair kv : doc.as<JsonObject>()) { 

    String key = kv.key().c_str(); 

    int value = kv.value().as<int>(); 

 

    if (key.startsWith("Servo")) { 

      int channel = key.substring(5).toInt(); // "Servo1" → 1 

      value = constrain(value, 0, 180); 

      int pulse = map(value, 0, 180, SERVO_MIN, SERVO_MAX); 
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      pwm.setPWM(channel, 0, pulse); 

      Serial.print("Set "); 

      Serial.print(key); 

      Serial.print(" to "); 

      Serial.print(value); 

      Serial.println(" degrees"); 

    } 

  } 

} 

 

 

Python E-stop Relay Script 

This Python script runs on the Jetson Nano and manages a physical emergency stop relay 

connected via GPIO. It listens for MQTT messages on the topic jetson/estop/relay, expecting 

a JSON payload with an estop boolean value. When estop is true, the script immediately 

disables the relay by setting the GPIO pin HIGH, cutting power to the system. When estop is 

false, a 3-second confirmation timer begins—ensuring transient errors or noise do not cause 

unintended system reactivation. After 3 seconds without interruption, the relay is re-enabled 

(GPIO LOW). The script also publishes a status heartbeat to the jetson/status/run topic on 

successful connection. This mechanism adds an essential safety layer, ensuring that 

emergency stop conditions are honoured with both hardware enforcement and time-based 

stability. 

import Jetson.GPIO as GPIO 

import time 

import json 

import paho.mqtt.client as mqtt 

import threading 

 

# === GPIO Setup === 

GPIO.setmode(GPIO.BOARD) 

RELAY_PIN = 11  # GPIO17 (with internal pull-up on Jetson) 

GPIO.setup(RELAY_PIN, GPIO.OUT) 

GPIO.output(RELAY_PIN, GPIO.HIGH)  # Start with relay OFF (active LOW) 

 

# === MQTT Setup === 

BROKER = "10.125.124.177" 

PORT = 1883 

TOPIC = "jetson/estop/relay" 

STATUS_TOPIC = "jetson/status/run" 

 

# === Relay Logic === 

class RelayController: 

    def __init__(self): 

        self.confirmed_estop = True  # Start in estop state 

        self.timer = None 

        self.lock = threading.Lock() 

        GPIO.output(RELAY_PIN, GPIO.HIGH)  # Ensure relay is OFF initially 
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    def update_estop(self, new_estop): 

        with self.lock: 

            if new_estop: 

                if self.timer: 

                    self.timer.cancel() 

                    self.timer = None 

                if self.confirmed_estop is not True: 

                    self.confirmed_estop = True 

                    self._apply_relay_state(True) 

            else: 

                if self.timer: 

                    self.timer.cancel() 

                self.timer = threading.Timer(3.0, self._confirm_estop_clear) 

                self.timer.start() 

 

    def _confirm_estop_clear(self): 

        with self.lock: 

            if self.confirmed_estop != False: 

                self.confirmed_estop = False 

                self._apply_relay_state(False) 

 

    def _apply_relay_state(self, estop): 

        if estop: 

            print("E-Stop engaged → Relay OFF") 

            GPIO.output(RELAY_PIN, GPIO.HIGH) 

        else: 

            print("E-Stop cleared → Relay ON") 

            GPIO.output(RELAY_PIN, GPIO.LOW) 

 

    def cleanup(self): 

        if self.timer: 

            self.timer.cancel() 

        GPIO.output(RELAY_PIN, GPIO.HIGH) 

        GPIO.cleanup() 

 

relay_controller = RelayController() 

 

# === MQTT Callbacks === 

def on_connect(client, userdata, flags, rc): 

    print("Connected to MQTT broker") 

    client.subscribe(TOPIC) 

    # Publish run status 

    client.publish(STATUS_TOPIC, json.dumps({"run": True})) 

 

def on_message(client, userdata, msg): 

    try: 

        payload = json.loads(msg.payload.decode()) 
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        estop = payload.get("estop") 

        if isinstance(estop, bool): 

            relay_controller.update_estop(estop) 

        else: 

            print("Invalid payload:", payload) 

    except Exception as e: 

        print("Error parsing message:", e) 

 

# === Main === 

client = mqtt.Client() 

client.on_connect = on_connect 

client.on_message = on_message 

 

try: 

    client.connect(BROKER, PORT, 60) 

    client.loop_forever() 

except KeyboardInterrupt: 

    print("\nShutting down...") 

finally: 

    relay_controller.cleanup() 

 

 

Python Servo Control Script 

This Python script bridges MQTT-based control messages to the Arduino responsible for 

servo actuation via the PCA9685 driver. It listens to the topic jetson/command/servo, 

expecting JSON payloads with keys like "servo1" and "servo2", which are internally 

remapped to PCA9685 channels ("Servo0", "Servo1"). Upon receiving a command, the script 

serialises the data into JSON and transmits it over /dev/arduino_pca using a dedicated lock to 

ensure thread-safe communication. It waits for an "OK" response from the Arduino before 

proceeding, providing a basic form of handshake confirmation. This script ensures real-time, 

reliable motor control in response to user intent, whether triggered by EEG commands or 

other high-level logic within the system. 

import json 

import time 

import serial 

import threading 

import paho.mqtt.client as mqtt 

 

# === MQTT Config === 

MQTT_BROKER = "10.125.124.177" 

MQTT_PORT = 1883 

MQTT_TOPIC = "jetson/command/servo" 

 

# === Serial Config === 

SERIAL_PORT = "/dev/arduino_pca" 

BAUDRATE = 115200 

ser = serial.Serial(SERIAL_PORT, BAUDRATE, timeout=1) 
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time.sleep(2)  # Wait for Arduino reset 

 

# === Lock for serial access === 

lock = threading.Lock() 

 

def send_to_arduino(payload): 

    try: 

        with lock: 

            ser.write((json.dumps(payload) + "\n").encode("utf-8")) 

            while True: 

                line = ser.readline().decode("utf-8").strip() 

                if line == "OK": 

                    break 

    except Exception as e: 

        print("Serial error:", e) 

 

# === MQTT Callbacks === 

def on_connect(client, userdata, flags, rc): 

    print("Connected to MQTT broker with result code", rc) 

    client.subscribe(MQTT_TOPIC) 

 

def on_message(client, userdata, msg): 

    try: 

        payload = json.loads(msg.payload.decode("utf-8")) 

        mapped = {} 

        for k, v in payload.items(): 

            if k == "servo1": 

                mapped["Servo0"] = v 

            elif k == "servo2": 

                mapped["Servo1"] = v 

        if mapped: 

            send_to_arduino(mapped) 

            print(f"Sent to Arduino: {mapped}") 

    except Exception as e: 

        print("Failed to handle message:", e) 

 

# === Start MQTT client === 

client = mqtt.Client() 

client.on_connect = on_connect 

client.on_message = on_message 

client.connect(MQTT_BROKER, MQTT_PORT, 60) 

 

try: 

    client.loop_forever() 

except KeyboardInterrupt: 

    print("Exiting...") 

    ser.close() 
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Python INA226 Current Monitoring Script 

This script reads real-time voltage and current data from an Arduino connected to two 

INA226 sensors via I²C. The Arduino sends JSON-formatted data over serial to the Jetson 

Nano, where this script parses the output and publishes it to MQTT topics 

jetson/monitor/power/ina1 and jetson/monitor/power/ina2. Each loop cycle reads a single line 

of serial input, decodes the JSON payload, and forwards the respective INA1 and INA2 

readings to the MQTT broker at 10.125.124.177. Error handling is included for serial 

communication issues and malformed JSON, ensuring stable long-term operation. This setup 

provides essential power telemetry for live monitoring, debugging, and safety validation of 

the exoskeleton’s electrical system. 

import serial 

import json 

import time 

import paho.mqtt.client as mqtt 

 

# Config 

SERIAL_PORT = "/dev/arduino_ina" 

BAUD_RATE = 115200 

MQTT_BROKER = "10.125.124.177" 

MQTT_PORT = 1883 

TOPIC_INA1 = "jetson/monitor/power/ina1" 

TOPIC_INA2 = "jetson/monitor/power/ina2" 

 

# Setup MQTT 

client = mqtt.Client() 

client.connect(MQTT_BROKER, MQTT_PORT, 60) 

 

# Setup serial 

ser = serial.Serial(SERIAL_PORT, BAUD_RATE, timeout=1) 

time.sleep(2) 

 

print("📡 Monitoring INA sensors...") 

 

while True: 

    try: 

        line = ser.readline().decode("utf-8", errors="ignore").strip() 

        if not line: 

            continue 

 

        data = json.loads(line) 

 

        if "ina1" in data: 

            client.publish(TOPIC_INA1, json.dumps(data["ina1"])) 

        if "ina2" in data: 

            client.publish(TOPIC_INA2, json.dumps(data["ina2"])) 

 

    except json.JSONDecodeError as e: 
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        print(f" JSON decode error: {e} | line: {line}") 

    except Exception as e: 

        print(f" General error: {e}") 

        time.sleep(1) 

 

 

Python Limit Switch Monitoring Script 

This script reads the state of four limit switches from an Arduino (connected via 

/dev/arduino_limits) and publishes their status to MQTT for real-time system monitoring. 

The Arduino continuously outputs JSON-encoded boolean values for each switch (LS1 to 

LS4), which this script parses and republishes to the topic jetson/limits/ls. The script ensures 

that the latest switch states are made available to other system components, allowing 

immediate responses—such as halting or reversing motion when physical limits are reached. 

Robust error handling is implemented to tolerate malformed serial input and maintain 

continuous operation even under unstable conditions. 

import serial 

import json 

import paho.mqtt.client as mqtt 

 

# === Configuration === 

SERIAL_PORT = "/dev/arduino_limits" 

BAUDRATE = 115200 

MQTT_BROKER = "10.125.124.177" 

MQTT_PORT = 1883 

MQTT_TOPIC = "jetson/limits/ls" 

 

# === MQTT Setup === 

client = mqtt.Client() 

client.connect(MQTT_BROKER, MQTT_PORT, 60) 

client.loop_start() 

 

# === Serial Setup === 

ser = serial.Serial(SERIAL_PORT, BAUDRATE, timeout=1) 

 

# === Track Previous State === 

last_state = { 

    "LS1": None, 

    "LS2": None, 

    "LS3": None, 

    "LS4": None 

} 

 

print("Listening on serial and publishing changes to MQTT...") 

 

while True: 

    try: 

        line = ser.readline().decode("utf-8").strip() 
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        if not line: 

            continue 

 

        data = json.loads(line) 

        changed = {} 

 

        for key in ["LS1", "LS2", "LS3", "LS4"]: 

            if key in data: 

                if data[key] != last_state[key]: 

                    changed[key] = data[key] 

                    last_state[key] = data[key] 

 

        if changed: 

            client.publish(MQTT_TOPIC, json.dumps(last_state)) 

            print(f"Published to {MQTT_TOPIC}: {last_state}") 

 

    except json.JSONDecodeError as e: 

        print(f"JSON decode error: {e}") 

    except Exception as e: 

        print(f"Error: {e}") 

 

Python EEG Command Handler Script 

This script acts as the core logic layer for interpreting EEG-based control signals and 

enforcing physical safety constraints. It listens to two MQTT topics: 

jetson/eeg/command/servo for high-level EEG actions (e.g., "lift", "push", "left", "right") and 

jetson/limits/ls for limit switch states (LS1–LS4). When an EEG command is received, the 

script calculates the desired change in servo angle—while actively checking if movement is 

blocked due to a triggered limit switch. If a limit is hit, the servo is momentarily reversed to 

relieve pressure and movement is blocked until the switch is cleared. Servo positions are 

clamped within predefined ranges (servo1: 0–60°, servo2: 80–180°), and updated angles are 

published to jetson/command/servo for real-time actuation. The use of threading ensures that 

each MQTT message is handled promptly without blocking the main loop, and debug logs 

help verify timing and decision logic during testing. 

import json 

import time 

import threading 

import paho.mqtt.client as mqtt 

 

# === MQTT CONFIG === 

BROKER = "10.125.124.177" 

PORT = 1883 

COMMAND_TOPIC = "jetson/eeg/command/servo" 

LIMIT_TOPIC = "jetson/limits/ls" 

OUTPUT_TOPIC = "jetson/command/servo" 

 

# === Debug Mode === 

debug = True 
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# === Servo Limits === 

servo_limits = { 

    "servo1": {"min": 0, "max": 60},     # Elbow 

    "servo2": {"min": 80, "max": 180}    # Wrist 

} 

 

# === Initial Servo States === 

servo_angles = { 

    "servo1": 30,   # Midpoint of 0–60 

    "servo2": 145   # Midpoint of 180–80 

} 

 

movement_blocked = { 

    "servo1": False, 

    "servo2": False 

} 

 

# === Constants === 

STEP = 2.5 

REVERSE_STEP = 2.5 

 

client = mqtt.Client() 

 

# === Limit Switch Handling === 

def on_limit_message(client, userdata, msg): 

    start = time.perf_counter() 

    try: 

        payload = json.loads(msg.payload.decode("utf-8")) 

 

        # --- Servo1 (Elbow): LS1 = max limit, LS2 = min limit --- 

        ls1_triggered = payload.get("LS1", False) 

        ls2_triggered = payload.get("LS2", False) 

        if ls1_triggered: 

            if not movement_blocked["servo1"]: 

                movement_blocked["servo1"] = True 

                # LS1 = max → reverse down 

                servo_angles["servo1"] -= REVERSE_STEP 

                servo_angles["servo1"] = max(servo_limits["servo1"]["min"], 

servo_angles["servo1"]) 

                client.publish(OUTPUT_TOPIC, json.dumps({"servo1": 

servo_angles["servo1"]})) 

                if debug: 

                    print(f"LS1 hit! Reversing servo1 down to 

{servo_angles['servo1']}") 

        elif ls2_triggered: 

            if not movement_blocked["servo1"]: 

                movement_blocked["servo1"] = True 
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                # LS2 = min → reverse up 

                servo_angles["servo1"] += 5 

                servo_angles["servo1"] = min(servo_limits["servo1"]["max"], 

servo_angles["servo1"]) 

                client.publish(OUTPUT_TOPIC, json.dumps({"servo1": 

servo_angles["servo1"]})) 

                if debug: 

                    print(f"LS2 hit! Reversing servo1 up to 

{servo_angles['servo1']}") 

        else: 

            movement_blocked["servo1"] = False 

 

        # --- Servo2 (Wrist): LS3 = max limit, LS4 = min limit --- 

        ls3_triggered = payload.get("LS3", False) 

        ls4_triggered = payload.get("LS4", False) 

        if ls3_triggered: 

            if not movement_blocked["servo2"]: 

                movement_blocked["servo2"] = True 

                # LS3 = max → reverse down 

                servo_angles["servo2"] -= REVERSE_STEP 

                servo_angles["servo2"] = max(servo_limits["servo2"]["min"], 

servo_angles["servo2"]) 

                client.publish(OUTPUT_TOPIC, json.dumps({"servo2": 

servo_angles["servo2"]})) 

                if debug: 

                    print(f"LS3 hit! Reversing servo2 down to 

{servo_angles['servo2']}") 

        elif ls4_triggered: 

            if not movement_blocked["servo2"]: 

                movement_blocked["servo2"] = True 

                # LS4 = min → reverse up 

                servo_angles["servo2"] += 5 

                servo_angles["servo2"] = min(servo_limits["servo2"]["max"], 

servo_angles["servo2"]) 

                client.publish(OUTPUT_TOPIC, json.dumps({"servo2": 

servo_angles["servo2"]})) 

                if debug: 

                    print(f"LS4 hit! Reversing servo2 up to 

{servo_angles['servo2']}") 

        else: 

            movement_blocked["servo2"] = False 

 

    except Exception as e: 

        print("Error handling limit switch message:", e) 

    end = time.perf_counter() 

    if debug: 

        print(f"Limit handler time: {end - start:.4f}s") 
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# === Command Handling === 

def on_command_message(client, userdata, msg): 

    start = time.perf_counter() 

    try: 

        payload = json.loads(msg.payload.decode("utf-8")) 

        action = payload.get("action") 

 

        if action == "push": 

            servo = "servo1" 

            delta = STEP 

        elif action == "lift": 

            servo = "servo1" 

            delta = -STEP 

        elif action == "right": 

            servo = "servo2" 

            delta = STEP 

        elif action == "left": 

            servo = "servo2" 

            delta = -STEP 

        else: 

            return 

 

        if movement_blocked[servo]: 

            if debug: 

                print(f"Movement blocked for {servo}, ignoring {action}") 

            return 

 

        # Update and clamp angle based on servo limits 

        servo_angles[servo] += delta 

        min_angle = servo_limits[servo]["min"] 

        max_angle = servo_limits[servo]["max"] 

 

        servo_angles[servo] = max(min_angle, min(max_angle, 

servo_angles[servo])) 

 

        client.publish(OUTPUT_TOPIC, json.dumps({servo: servo_angles[servo]})) 

        if debug: 

            print(f"Action '{action}' → {servo} = {servo_angles[servo]}") 

 

    except Exception as e: 

        print("Error handling servo command:", e) 

    end = time.perf_counter() 

    if debug: 

        print(f"Command handler time: {end - start:.4f}s") 

 

# === Threaded Wrapper === 

def threaded_callback(callback): 

    def wrapper(client, userdata, msg): 
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        threading.Thread(target=callback, args=(client, userdata, 

msg)).start() 

    return wrapper 

 

# === Setup MQTT === 

client.on_connect = lambda c, u, f, rc: ( 

    print("Connected with result code", rc), 

    c.subscribe(COMMAND_TOPIC, qos=0), 

    c.subscribe(LIMIT_TOPIC, qos=0) 

) 

 

client.message_callback_add(COMMAND_TOPIC, 

threaded_callback(on_command_message)) 

client.message_callback_add(LIMIT_TOPIC, threaded_callback(on_limit_message)) 

 

client.connect(BROKER, PORT, 60) 

client.loop_start() 

 

# === Keep Main Thread Alive === 

try: 

    while True: 

        time.sleep(0.1) 

except KeyboardInterrupt: 

    print("Exiting...") 

    client.loop_stop() 

    client.disconnect() 
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Safe Operation 
 

Assumptions for Safe Operation 

The system can be safely operated under the following conditions:  

1. User Setup:  

a. The user should be seated comfortably in a chair to ensure proper posture during 

operation.  

b. The user must wear the Emotiv EpochX 14-channel headset correctly, ensuring 

proper electrode contact for accurate data reading. Test E-T08.  

c. A nurse or trained operator should be present during the training sessions to assist 

the user and ensure safety.  

2. Training Sessions:  

a. The system is designed for 15-minute training sessions followed by 30-minute 

breaks. Over time, training durations will adjust based on the user's fatigue level.  

b. Users must refrain from eating, drinking, or smoking during training. If the user 

feels fatigued, they should take a break and, if possible, resume the training once 

they feel comfortable. Test E-T09.  

c. The system will automatically stop if the user exceeds the safe operational range 

for the servos or other components, and a nurse or trained operator will have the 

physical Emergency Stop button if the user is unable to hold.  

3. Environmental Factors:  

a. The system should be operated in a well-ventilated environment to prevent 

overheating of components, especially the servos and electronics.  

b. It must be ensured that the emergency stop (both software and physical) is clearly 

accessible and functional in the event of any failure or malfunction.  

c. Remove as many electronics from the vicinity to reduce noise and interference 

with the EEG headset.  

4. Health and Safety Monitoring:  

a. The user should not operate the system if feeling unwell or fatigued.  

b. The user should not operate the system if they are alone and/or without a trained 

professional.  

c. There should be clear instructions and training on how to operate the system 

safely, particularly for both the user and the nurse, which are included above and 

will be present in a user manual.  
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Safety Features 

The system is equipped with several built-in safety features to ensure the safe operation of 

both the user and the hardware:  

1. Range Limitation and Limit Switches for Servos:  

a. Servos used in the system are range-limited to prevent excessive motion that 

could lead to injury or damage. If a servo attempts to exceed its range, limit 

switches will activate, signalling the system to stop the movement and reverse by 

2.5 degrees. This ensures the system doesn’t push beyond safe mechanical 

boundaries.  

2. Over-Current Protection:  

a. Over-current protection is implemented on both the servos and the entire 

system. The servos themselves are equipped with their own over-current 

protection circuits to prevent overheating or damage from excessive current 

draw. Additionally, current sensors are employed to measure and monitor the 

overall system's current usage, further preventing any possible electrical failure or 

fire hazard due to an overload.  

3. Emergency Stop (E-Stop):  

a. The system includes both a software-based emergency stop accessible via the 

Node-RED dashboard and a physical emergency stop button. The software-

based emergency stop will immediately halt all servo operations if triggered, 

while the physical button provides an additional layer of safety in case of an 

emergency or malfunction and has the same function as the software e-stop.  

4. Battery Safety:  

a. The system runs on two batteries in parallel to ensure reliable power supply. 

This configuration helps prevent sudden power loss and ensures that the system 

will continue to operate safely if one battery is depleted or fails. The batteries last 

for 2 hours of constant use, and the headset lasts an hour when fully charged. The 

batteries are also designed with built-in safety mechanisms to prevent overheating 

and overcharging.  

5. Human-Machine Interaction (HMI) Safety:  

a. The user will interact with the system via a laptop running training software, 

with real-time data streaming from the Emotiv EpochX headset. The nurse will 

be responsible for ensuring the user’s well-being and intervening if any issues 

arise during the training session and mounting the arm to the user.  

b. The nurse will be trained to recognize signs of user discomfort or fatigue and will 

be responsible for ensuring that the user follows the recommended training 

schedules, including taking appropriate breaks.  
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6. Software Safety Monitoring:  

a. The system software provides real-time feedback on both the hardware (servos, 

battery status) and user data (via the EEG headset). If any safety limits are 

exceeded (e.g., servo range, over-current, or system failure), the software will 

trigger appropriate actions, including stopping movement.  

Justification of Safety Features 

The safety features integrated into the system are justified by the following reasons:  

1. Servo Range Limitation and Over-Current Protection:  

a. Ensuring the servos remain within a predefined range prevents mechanical 

damage and minimizes the risk of injury to the user. The over-current protection 

ensures that the system operates within safe electrical limits, preventing damage 

from excess current and reducing the risk of electrical fires.  

2. Emergency Stop Mechanisms:  

a. Both the physical and software emergency stops are vital to prevent further system 

operation in case of a fault, such as servo failure, overheating, or an unexpected 

hardware malfunction. The availability of two stop mechanisms (software and 

physical) adds redundancy to the safety system, ensuring the operator or user can 

stop the system quickly in case of any hazard.  

3. Battery Safety:  

a. Using two parallel batteries ensures that the system remains operational even in 

the event of battery failure. The additional battery safety mechanisms protect the 

system from electrical hazards and ensure that it can be safely recharged without 

risk of overcharging or overheating.  

4. Human-Machine Interface (HMI) Safety:  

a. Having a nurse trained in the safe operation of the system ensures that there is 

someone who can monitor the user and intervene if necessary. The nurse’s role in 

guiding the user through training sessions ensures that the user remains within the 

system’s safe operating parameters.  

5. System Monitoring and Feedback:  

a. Real-time monitoring of the system’s performance, user data, and hardware status 

helps ensure that any issues are immediately detected and addressed. By providing 

alerts and feedback to the nurse, the system helps maintain a safe and controlled 

training environment.  

Overall, these safety features are designed to ensure the safety of both the user and the 

system, promoting a controlled and safe training experience while minimizing the risk of 

injury, equipment failure, or system malfunction. This structure addresses the necessary 

assumptions and safety features, providing a clear and justified explanation for the measures 

taken to ensure safe operation.  
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User Manual 
This manual provides step-by-step instructions for safely operating the robotic arm system 

with the Emotiv EEG headset. It includes setup, operation, and troubleshooting guidance. A 

nurse, carer or family member with the appropriate training to use the device and software. 

 

1. Safe Operation  

Assumptions for Safe Operation  

• The system is designed to be operated only when the user is seated comfortably in a 

chair, with a properly fitted Emotiv EpochX 14-channel headset.  

• A trained nurse will be present during training to ensure the user is positioned 

correctly and safe throughout the session.  

• Training Sessions: The system operates with 15-minute training intervals followed 

by 30-minute breaks. The user should avoid eating, drinking, or smoking during the 

training. If the user feels fatigued, the nurse should guide them to take a break.  

Safety Features  

• Emergency Stop (E-Stop): Both software-based and physical emergency stop 

buttons are available.  

• Servo Range Limitation and Over-Current Protection: Prevents damage or injury 

by limiting servo movement and monitoring electrical usage.  

• Battery Safety: Dual parallel batteries with built-in safety mechanisms for preventing 

overheating and overcharging.  
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• Human-Machine Interface (HMI) Safety: Nurse supervision ensures safe operation 

and intervention during the training.  

• System Monitoring and Feedback: Real-time system monitoring with alerts for 

abnormal conditions.  

  

2. Setting Up the System  

Step 1: Mounting the Robotic Arm  

1. Adjusting Velcro Straps:  

a. The nurse will help the user strap their arm into the robotic arm. The adjustable 

Velcro straps are designed to rest on foam sections, ensuring the user’s arm is 

comfortably supported.  

b. The bicep section should be placed above the elbow, and the hand should be 

placed through the arm's circular section. This setup ensures the arm is 

positioned correctly for optimal movement and safety during training.  
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Step 2: Preparing the Emotiv EpochX Headset  

1. Positioning the Headset: Ensure that the headset is properly worn by the user. The 

electrodes should have good contact with the skin to ensure accurate readings.  

2. Start the Emotiv Software:  

a. Launch the Emotiv software on the laptop.  

b. Ensure the software indicates that the connections are "on" and that the headset is 

ready.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3:  

Setting Up Node-RED  

1. Start Node-RED:  

a. On the laptop, open PowerShell and type node-red and press Enter.  

b. This will start the Node-RED server, allowing communication between the 

software and the robot.  
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2. Launch Docker and Start MQTT Container:  

a. After Node-RED is running, launch Docker on the system.  

b. Find the MQTT container and click the "Run" button to initialize the MQTT 

server.  

3. Connect the Jetson Nano:  

a. Plug in the Jetson Nano to the laptop. The auto-script will run automatically, 

booting up necessary scripts (e.g., main, driver, MQTT).  

b. Once the setup is complete, Node-RED will receive a "ready" response 

confirming that the system is operational.  

3. Starting the Training  

1. Verification:  

a. Confirm that the Emotiv software is displaying correct EEG data and that the 

system is communicating properly with Node-RED.  

2. Begin Training:  

a. Once all systems are confirmed as ready, the nurse will start the training session. 

The user will begin the 15-minute training session, during which the robotic arm 

will assist in training based on EEG data.  

b. The system will monitor for any potential safety risks (e.g., servo over-range or 

excessive current draw) and stop operations if necessary.  
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4. Troubleshooting & Debugging  

If any issues arise during setup or operation, follow these steps to troubleshoot:  

1. Emotiv Software Issues:  

a. No Connection: Ensure the headset electrodes have proper contact with the 

user's skin. Check the USB connection between the headset and the laptop.  

b. Test Connection: Open the Emotiv software and check if the connections display 

as "on". If not, reconnect the headset and verify that the software detects the 

device.  

2. Node-RED Issues:  

a. Node-RED Not Starting: If Node-RED does not start, open PowerShell and type 

node-red again. If there’s an error, check the script for issues or restart the laptop.  

b. Communication Issues: If Node-RED doesn't receive a "ready" response, ensure 

the Jetson Nano is properly connected to the laptop and powered.  

3. Servo Issues:  

a. If the servos are not responding, check for over-current conditions or any range 

limits being exceeded. The system will automatically stop the servo if these limits 

are triggered. If needed, press the emergency stop button.  

4. General Hardware Issues:  

a. Power Issues: If the system is not receiving power, ensure both batteries are 

charged and connected properly. If one battery fails, the system should continue 

operating using the second battery.  

b. Emergency Stop Triggered: If the emergency stop is activated, the system will 

halt all servo operations. Ensure that the user is safely seated and that the system 

can be reset.  

5. Safety Precautions  

1. Fatigue:  

a. If the user feels fatigued, they should immediately stop the training and take a 

break. The system is designed to adjust training based on the user’s level of 

fatigue.  

2. Emergency Stop:  

a. If at any point the user or the nurse feels that the system is malfunctioning, the 

emergency stop button can be pressed to stop the system immediately.  

3. Environmental Considerations:  

a. Ensure the system is operating in a well-ventilated space to prevent overheating.  

b. Keep electronics away from the EEG headset to avoid interference.  
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Further Work 
 

Unfinished Features 

INA219 Current Sensor Chip  

Description of Sub-Component  

Midway through the development of the arm, it was decided that there would have to be 

some sort of safety component to stop the servo motors from bending the arm too far. This 

could be detected through the current being supplied to the motor as it would be much higher 

if it is having to work against the strength of the arm.  

This then prompted a search for devices and methods for detecting the current with an ability 

to simply integrate it into a safety mechanism. The best solution for this problem was the 

INA219 I2C chip that can read a range of different values including the current and feed them 

back to an I2C compatible device using serial. This is perfect when paired with an Arduino to 

make a closed circuit that would shut off a relay when the current is too high.  

The relay is a 5V model with a coil and switch. The supply is then connected to a usually off 

or usually on side to decide how the relay should be operated. As this is a safety feature, the 

relay should default to off which means the circuit was designed in this way.  

As well as this, 2 INA219 chips will be required for each of the servos so that each is being 

monitored individually. With each of these in place it would be impossible for a situation to 

arise where one servo is drawing too much current, but the relay isn’t switched because a 

joined current monitor doesn’t sense above the threshold.  

Functional Requirements  

The functional requirements that this sub-component of the system are as follows:  

• The Component must be able to monitor the current of each servo live to a high 

degree of accuracy.  

• It must be able to shut off all of the power to the servos is a certain threshold is 

reached on one or both of the servos.  

• It must send the current as well as any other readings from the chip as a serial JSON 

output.  

• It must all be self-contained and not dependent on any other aspect of the entire 

system.  

• It must have a powered off fail state.  

• Must be in a small container that doesn’t encroach on the original design of the arm.  

• It needs to be easily connectable in series as an “in-between” component of the 

circuit.  
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• Each component of the circuit should be individually testable and removable from the 

main dataflow.  

Development of Component  

Development started on this by using the INA219 chip and an Arduino to see if the I2C 

connection was operational. Once this was accomplished and it was giving an accurate 

reading, the if-statement was written into the code to check for an appropriate current to limit 

the circuit. This was tested at a lower threshold to show that the code worked as it was only 

turning the onboard LED to show whether the value was over it. This was set at 700 for the 

fan motor tests on the Arduino as the current regularly fluctuated above and below this value.  

After this, a piece of code was written to test that the relay functioned as intended and won’t 

turn anything on that is meant to be off. It was critical that this was tested as this was 

intended as a safety feature and wouldn’t be validated as such with faulty components.  

To add the second INA219 chip to the circuit, the address had to be connected by a solder 

bridge to differentiate the second chip from the existing one. The code was then altered to 

contain arrays, and the Json was also updated to reference the chips by their unique address 

(0x40 & 0x44).   

During testing with two relays and two INA219 chips, the I2C connection stopped working 

after the relays were turned off. This could have been due to a surge in current as the relay 

has an electromagnetic field which could have caused this. This can be resolved by using 

diodes to prevent the current from surging where it shouldn’t as well as testing the component 

using an externally powered system to put through the current sensor.  

Programming Approach  

Due to the nature of this component and how it integrates with the project, it was decided to 

write functions that achieved each task so that each one could be turned on or off for each 

test. This also means that if the team didn’t want the relays to trigger for a particular test, it is 

possible to only log this to the console and move on from that particular function.  
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Figure 35 - INA Data Flow 

The flowchart above shows a high-level overview of the Arduino code. It operates in a loop 

that is only terminated by resetting or unplugging the Arduino. This is as the program on this 

Arduino is treated as an essential safety feature and if there is power to the system, it should 

be operational. The arrow going down from the decision in the flowchart represents the True 

outcome which would result in the relays being turned off indefinitely until the Arduino is 

reset. The other outcome is the “False” outcome where the Json is sent over serial to the 

central controller. This happens during either outcome and is achieved by taking the inputs 

from the current sensor as variables and combining them all in a Json string. This is 

standardised with the rest of the Arduinos using serial communication to ensure that the 

jetson that is running the central control program doesn’t have to make sense of multiple 

different Json formats.  

Discontinuation of Sub-Component  

While the component itself was built and tested, in the end this wasn’t added to the final 

prototype due to adequate safety measures being in place for the testing of the system. 

However, if this was to be launched to the public, it would be a useful step towards not 

requiring supervision for the system to operate safely. There were INA266 chips integrated 

into the system due to their higher current capabilities and ability to detect voltage. These 

were instead used to log the status of various components throughout the system.  
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The component was tested separately using a fan motor being ran through an independent 

power source that passed through the relays connected to the Arduino. During this testing, the 

system was able to automatically detect spikes in the current due to resistance that was being 

exerted on the motor proving that the safety system could be added to the project as a whole 

at any point in time without interfering with the components that are already in place.   

Simulation Using ROS2 & Gazebo  

Initially, there was an intention to simulate the physical system using Gazebo to allow for 

training of the Emotiv commands. This would have consisted of python scripts which would 

have received commands from the EEG headset and used these to manipulate a simulated 

system.  

The main components of the Gazebo Simulation would have been:  

• Robot Description  

o Describes the Links, joints, sensors & physical properties.  

o URDF or SDF models would have been used to describe the physical collisions of the 

system as well as the visuals in the simulation.  

• ROS2 Nodes  

o These have the ability to control the manipulation of robot arms that are similar to the 

system developed in this project.  

o Can publish or subscribe to sensor data  

o Are also able to provide high level logic such as planners or behaviour trees  

• World Files  

o While these wouldn’t have been useful to this project in particular. There is the ability 

to create a world file that a robot can either traverse or interact with using sensors and 

other methods of obstacle detection.  

• ROS to Gazebo Communication Bridge  

o This ensures that Gazebo publishes topics that ROS2 nodes can subscribe to as well as 

ROS2 communicating back  

• Launch files  

o These are written in python for ROS2.  

o Are often used to launch gazebo as well as any robot description files and controllers 

that are paired with it.  

o This is the part of the simulation that failed to work as the machines in the lab had 

recently been updated to ROS2 and the package which launched Gazebo wasn’t 

installed correctly causing it to crash on start-up.  

Before the development of this simulation was discontinued, the description of the robot was 

using primitive shapes and joints to show a rough outline of what the system would look like. 
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Before the controllers were written, it was essential that the launch files were able to launch 

gazebo with the robot present in the simulation. Once it was obvious that this wasn’t going to 

work, this aspect of the project was discontinued.  

In retrospect, this element of development could have benefited the team. It would have 

allowed the team working on the EEG headset to send their commands to a tangible system 

that reacted to what was being sent. It would have also helped to understand how the physical 

system should react to the commands that were being sent. If the reaction of the simulated 

system to a command is too subtle or too dramatic, this could have been tweaked without the 

risk of harm or damage to the equipment that comes with the physical testing of the system. It 

also could have shown potential issues that could become apparent once the system is built 

before it is close to completion allowing extra time to resolve these issues.  

 

System Improvements 

While the prototype successfully demonstrated EEG-controlled actuation for rehabilitation, 

several improvements could enhance reliability, usability, and scalability in future iterations. 

Transitioning from USB-connected Arduinos to a custom PCB or integrated microcontroller 

board would reduce wiring complexity and improve robustness. Incorporating onboard data 

logging and feedback (e.g. encoder feedback from servos) would allow finer motion control 

and better fault detection. Software-wise, migrating to a unified interface—either through a 

more robust ROS2 implementation or a custom web-based UI—could streamline monitoring 

and user interaction. Finally, upgrading the mechanical design to include stronger, lighter 

materials and more precise joints would further align the system with real-world 

rehabilitation needs, paving the way for clinical testing and refinement. 
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Appendix 

Appendix A - Engineering Drawings 
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Appendix B – 5v Relay Board Datasheet 



Page 121 



Page 122 



Page 123 



Page 124 



Page 125 



Page 126 



Page 127 



Page 128 

 

 

 



Page 129 

Appendix C – Arduino Uno R3 
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Appendix D – DS3240 Servo Datasheet 
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Appendix E – E-Stop Datasheet 
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Appendix F – INA219 Datasheet 
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Appendix G – INA226 Datasheet 
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Appendix H – Jetson Nano Datasheet 
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Appendix I – Omron V-156-1C25 Microswitch Datasheet 
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Appendix J – PCA9685 Datasheet 
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Appendix K – SRD-05VDC Relay Datasheet 
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Appendix L – Talentcell 12v Battery Datasheet 
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Appendix M – XL4015 DC-DC Step-down Buck converter Datasheet 
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